/* imtql2.f -- translated by f2c (version 19961017). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b9 = 1.; /* Subroutine */ int imtql2_(integer *nm, integer *n, doublereal *d__, doublereal *e, doublereal *z__, integer *ierr) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3; doublereal d__1, d__2; /* Builtin functions */ double d_sign(doublereal *, doublereal *); /* Local variables */ static doublereal b, c__, f, g; static integer i__, j, k, l, m; static doublereal p, r__, s; static integer ii; extern doublereal pythag_(doublereal *, doublereal *); static integer mml; static doublereal tst1, tst2; /* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL2, */ /* NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON, */ /* AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE. */ /* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971). */ /* THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS */ /* OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD. */ /* THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO */ /* BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS */ /* FULL MATRIX TO TRIDIAGONAL FORM. */ /* ON INPUT */ /* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */ /* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */ /* DIMENSION STATEMENT. */ /* N IS THE ORDER OF THE MATRIX. */ /* D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. */ /* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX */ /* IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY. */ /* Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE */ /* REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS */ /* OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN */ /* THE IDENTITY MATRIX. */ /* ON OUTPUT */ /* D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN */ /* ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT */ /* UNORDERED FOR INDICES 1,2,...,IERR-1. */ /* E HAS BEEN DESTROYED. */ /* Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC */ /* TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE, */ /* Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED */ /* EIGENVALUES. */ /* IERR IS SET TO */ /* ZERO FOR NORMAL RETURN, */ /* J IF THE J-TH EIGENVALUE HAS NOT BEEN */ /* DETERMINED AFTER 30 ITERATIONS. */ /* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */ /* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */ /* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY */ /* THIS VERSION DATED AUGUST 1983. */ /* ------------------------------------------------------------------ */ /* Parameter adjustments */ z_dim1 = *nm; z_offset = z_dim1 + 1; z__ -= z_offset; --e; --d__; /* Function Body */ *ierr = 0; if (*n == 1) { goto L1001; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { /* L100: */ e[i__ - 1] = e[i__]; } e[*n] = 0.; i__1 = *n; for (l = 1; l <= i__1; ++l) { j = 0; /* .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT .......... */ L105: i__2 = *n; for (m = l; m <= i__2; ++m) { if (m == *n) { goto L120; } tst1 = (d__1 = d__[m], abs(d__1)) + (d__2 = d__[m + 1], abs(d__2)) ; tst2 = tst1 + (d__1 = e[m], abs(d__1)); if (tst2 == tst1) { goto L120; } /* L110: */ } L120: p = d__[l]; if (m == l) { goto L240; } if (j == 30) { goto L1000; } ++j; /* .......... FORM SHIFT .......... */ g = (d__[l + 1] - p) / (e[l] * 2.); r__ = pythag_(&g, &c_b9); g = d__[m] - p + e[l] / (g + d_sign(&r__, &g)); s = 1.; c__ = 1.; p = 0.; mml = m - l; /* .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... */ i__2 = mml; for (ii = 1; ii <= i__2; ++ii) { i__ = m - ii; f = s * e[i__]; b = c__ * e[i__]; r__ = pythag_(&f, &g); e[i__ + 1] = r__; if (r__ == 0.) { goto L210; } s = f / r__; c__ = g / r__; g = d__[i__ + 1] - p; r__ = (d__[i__] - g) * s + c__ * 2. * b; p = s * r__; d__[i__ + 1] = g + p; g = c__ * r__ - b; /* .......... FORM VECTOR .......... */ i__3 = *n; for (k = 1; k <= i__3; ++k) { f = z__[k + (i__ + 1) * z_dim1]; z__[k + (i__ + 1) * z_dim1] = s * z__[k + i__ * z_dim1] + c__ * f; z__[k + i__ * z_dim1] = c__ * z__[k + i__ * z_dim1] - s * f; /* L180: */ } /* L200: */ } d__[l] -= p; e[l] = g; e[m] = 0.; goto L105; /* .......... RECOVER FROM UNDERFLOW .......... */ L210: d__[i__ + 1] -= p; e[m] = 0.; goto L105; L240: ; } /* .......... ORDER EIGENVALUES AND EIGENVECTORS .......... */ i__1 = *n; for (ii = 2; ii <= i__1; ++ii) { i__ = ii - 1; k = i__; p = d__[i__]; i__2 = *n; for (j = ii; j <= i__2; ++j) { if (d__[j] >= p) { goto L260; } k = j; p = d__[j]; L260: ; } if (k == i__) { goto L300; } d__[k] = d__[i__]; d__[i__] = p; i__2 = *n; for (j = 1; j <= i__2; ++j) { p = z__[j + i__ * z_dim1]; z__[j + i__ * z_dim1] = z__[j + k * z_dim1]; z__[j + k * z_dim1] = p; /* L280: */ } L300: ; } goto L1001; /* .......... SET ERROR -- NO CONVERGENCE TO AN */ /* EIGENVALUE AFTER 30 ITERATIONS .......... */ L1000: *ierr = l; L1001: return 0; } /* imtql2_ */