/* orthes.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int orthes_(integer *nm, integer *n, integer *low, integer *
igh, doublereal *a, doublereal *ort)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
/* Local variables */
static doublereal f, g, h__;
static integer i__, j, m;
static doublereal scale;
static integer la, ii, jj, mp, kp1;
/* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ORTHES, */
/* NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971). */
/* GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE */
/* REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS */
/* LOW THROUGH IGH TO UPPER HESSENBERG FORM BY */
/* ORTHOGONAL SIMILARITY TRANSFORMATIONS. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRIX. */
/* LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING */
/* SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED, */
/* SET LOW=1, IGH=N. */
/* A CONTAINS THE INPUT MATRIX. */
/* ON OUTPUT */
/* A CONTAINS THE HESSENBERG MATRIX. INFORMATION ABOUT */
/* THE ORTHOGONAL TRANSFORMATIONS USED IN THE REDUCTION */
/* IS STORED IN THE REMAINING TRIANGLE UNDER THE */
/* HESSENBERG MATRIX. */
/* ORT CONTAINS FURTHER INFORMATION ABOUT THE TRANSFORMATIONS. */
/* ONLY ELEMENTS LOW THROUGH IGH ARE USED. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
a_dim1 = *nm;
a_offset = a_dim1 + 1;
a -= a_offset;
--ort;
/* Function Body */
la = *igh - 1;
kp1 = *low + 1;
if (la < kp1) {
goto L200;
}
i__1 = la;
for (m = kp1; m <= i__1; ++m) {
h__ = 0.;
ort[m] = 0.;
scale = 0.;
/* .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
*/
i__2 = *igh;
for (i__ = m; i__ <= i__2; ++i__) {
/* L90: */
scale += (d__1 = a[i__ + (m - 1) * a_dim1], abs(d__1));
}
if (scale == 0.) {
goto L180;
}
mp = m + *igh;
/* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */
i__2 = *igh;
for (ii = m; ii <= i__2; ++ii) {
i__ = mp - ii;
ort[i__] = a[i__ + (m - 1) * a_dim1] / scale;
h__ += ort[i__] * ort[i__];
/* L100: */
}
d__1 = sqrt(h__);
g = -d_sign(&d__1, &ort[m]);
h__ -= ort[m] * g;
ort[m] -= g;
/* .......... FORM (I-(U*UT)/H) * A .......... */
i__2 = *n;
for (j = m; j <= i__2; ++j) {
f = 0.;
/* .......... FOR I=IGH STEP -1 UNTIL M DO -- .......... */
i__3 = *igh;
for (ii = m; ii <= i__3; ++ii) {
i__ = mp - ii;
f += ort[i__] * a[i__ + j * a_dim1];
/* L110: */
}
f /= h__;
i__3 = *igh;
for (i__ = m; i__ <= i__3; ++i__) {
/* L120: */
a[i__ + j * a_dim1] -= f * ort[i__];
}
/* L130: */
}
/* .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) .......... */
i__2 = *igh;
for (i__ = 1; i__ <= i__2; ++i__) {
f = 0.;
/* .......... FOR J=IGH STEP -1 UNTIL M DO -- .......... */
i__3 = *igh;
for (jj = m; jj <= i__3; ++jj) {
j = mp - jj;
f += ort[j] * a[i__ + j * a_dim1];
/* L140: */
}
f /= h__;
i__3 = *igh;
for (j = m; j <= i__3; ++j) {
/* L150: */
a[i__ + j * a_dim1] -= f * ort[j];
}
/* L160: */
}
ort[m] = scale * ort[m];
a[m + (m - 1) * a_dim1] = scale * g;
L180:
;
}
L200:
return 0;
} /* orthes_ */
syntax highlighted by Code2HTML, v. 0.9.1