/* rgg.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static doublereal c_b5 = 0.;
/* Subroutine */ int rgg_(integer *nm, integer *n, doublereal *a, doublereal *
b, doublereal *alfr, doublereal *alfi, doublereal *beta, integer *
matz, doublereal *z__, integer *ierr)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset;
/* Local variables */
extern /* Subroutine */ int qzit_(integer *, integer *, doublereal *,
doublereal *, doublereal *, logical *, doublereal *, integer *),
qzvec_(integer *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *), qzhes_(
integer *, integer *, doublereal *, doublereal *, logical *,
doublereal *), qzval_(integer *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *, logical *,
doublereal *);
static logical tf;
/* THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF */
/* SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK) */
/* TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED) */
/* FOR THE REAL GENERAL GENERALIZED EIGENPROBLEM AX = (LAMBDA)BX. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRICES A AND B. */
/* A CONTAINS A REAL GENERAL MATRIX. */
/* B CONTAINS A REAL GENERAL MATRIX. */
/* MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF */
/* ONLY EIGENVALUES ARE DESIRED. OTHERWISE IT IS SET TO */
/* ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS. */
/* ON OUTPUT */
/* ALFR AND ALFI CONTAIN THE REAL AND IMAGINARY PARTS, */
/* RESPECTIVELY, OF THE NUMERATORS OF THE EIGENVALUES. */
/* BETA CONTAINS THE DENOMINATORS OF THE EIGENVALUES, */
/* WHICH ARE THUS GIVEN BY THE RATIOS (ALFR+I*ALFI)/BETA. */
/* COMPLEX CONJUGATE PAIRS OF EIGENVALUES APPEAR CONSECUTIVELY */
/* WITH THE EIGENVALUE HAVING THE POSITIVE IMAGINARY PART FIRST. */
/* Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS */
/* IF MATZ IS NOT ZERO. IF THE J-TH EIGENVALUE IS REAL, THE */
/* J-TH COLUMN OF Z CONTAINS ITS EIGENVECTOR. IF THE J-TH */
/* EIGENVALUE IS COMPLEX WITH POSITIVE IMAGINARY PART, THE */
/* J-TH AND (J+1)-TH COLUMNS OF Z CONTAIN THE REAL AND */
/* IMAGINARY PARTS OF ITS EIGENVECTOR. THE CONJUGATE OF THIS */
/* VECTOR IS THE EIGENVECTOR FOR THE CONJUGATE EIGENVALUE. */
/* IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN ERROR */
/* COMPLETION CODE DESCRIBED IN THE DOCUMENTATION FOR QZIT. */
/* THE NORMAL COMPLETION CODE IS ZERO. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
z_dim1 = *nm;
z_offset = z_dim1 + 1;
z__ -= z_offset;
--beta;
--alfi;
--alfr;
b_dim1 = *nm;
b_offset = b_dim1 + 1;
b -= b_offset;
a_dim1 = *nm;
a_offset = a_dim1 + 1;
a -= a_offset;
/* Function Body */
if (*n <= *nm) {
goto L10;
}
*ierr = *n * 10;
goto L50;
L10:
if (*matz != 0) {
goto L20;
}
/* .......... FIND EIGENVALUES ONLY .......... */
tf = FALSE_;
qzhes_(nm, n, &a[a_offset], &b[b_offset], &tf, &z__[z_offset]);
qzit_(nm, n, &a[a_offset], &b[b_offset], &c_b5, &tf, &z__[z_offset], ierr)
;
qzval_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], &
tf, &z__[z_offset]);
goto L50;
/* .......... FIND BOTH EIGENVALUES AND EIGENVECTORS .......... */
L20:
tf = TRUE_;
qzhes_(nm, n, &a[a_offset], &b[b_offset], &tf, &z__[z_offset]);
qzit_(nm, n, &a[a_offset], &b[b_offset], &c_b5, &tf, &z__[z_offset], ierr)
;
qzval_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], &
tf, &z__[z_offset]);
if (*ierr != 0) {
goto L50;
}
qzvec_(nm, n, &a[a_offset], &b[b_offset], &alfr[1], &alfi[1], &beta[1], &
z__[z_offset]);
L50:
return 0;
} /* rgg_ */
syntax highlighted by Code2HTML, v. 0.9.1