/* tqlrat.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Table of constant values */
static doublereal c_b11 = 1.;
/* Subroutine */ int tqlrat_(integer *n, doublereal *d__, doublereal *e2,
integer *ierr)
{
/* System generated locals */
integer i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double d_sign(doublereal *, doublereal *);
/* Local variables */
static doublereal b, c__, f, g, h__;
static integer i__, j, l, m;
static doublereal p, r__, s, t;
static integer l1, ii;
extern doublereal pythag_(doublereal *, doublereal *), epslon_(doublereal
*);
static integer mml;
/* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT, */
/* ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH. */
/* THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC */
/* TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD. */
/* ON INPUT */
/* N IS THE ORDER OF THE MATRIX. */
/* D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX. */
/* E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE */
/* INPUT MATRIX IN ITS LAST N-1 POSITIONS. E2(1) IS ARBITRARY.
*/
/* ON OUTPUT */
/* D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN */
/* ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND */
/* ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE */
/* THE SMALLEST EIGENVALUES. */
/* E2 HAS BEEN DESTROYED. */
/* IERR IS SET TO */
/* ZERO FOR NORMAL RETURN, */
/* J IF THE J-TH EIGENVALUE HAS NOT BEEN */
/* DETERMINED AFTER 30 ITERATIONS. */
/* CALLS PYTHAG FOR DSQRT(A*A + B*B) . */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
--e2;
--d__;
/* Function Body */
*ierr = 0;
if (*n == 1) {
goto L1001;
}
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
/* L100: */
e2[i__ - 1] = e2[i__];
}
f = 0.;
t = 0.;
e2[*n] = 0.;
i__1 = *n;
for (l = 1; l <= i__1; ++l) {
j = 0;
h__ = (d__1 = d__[l], abs(d__1)) + sqrt(e2[l]);
if (t > h__) {
goto L105;
}
t = h__;
b = epslon_(&t);
c__ = b * b;
/* .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ........
.. */
L105:
i__2 = *n;
for (m = l; m <= i__2; ++m) {
if (e2[m] <= c__) {
goto L120;
}
/* .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT */
/* THROUGH THE BOTTOM OF THE LOOP .......... */
/* L110: */
}
L120:
if (m == l) {
goto L210;
}
L130:
if (j == 30) {
goto L1000;
}
++j;
/* .......... FORM SHIFT .......... */
l1 = l + 1;
s = sqrt(e2[l]);
g = d__[l];
p = (d__[l1] - g) / (s * 2.);
r__ = pythag_(&p, &c_b11);
d__[l] = s / (p + d_sign(&r__, &p));
h__ = g - d__[l];
i__2 = *n;
for (i__ = l1; i__ <= i__2; ++i__) {
/* L140: */
d__[i__] -= h__;
}
f += h__;
/* .......... RATIONAL QL TRANSFORMATION .......... */
g = d__[m];
if (g == 0.) {
g = b;
}
h__ = g;
s = 0.;
mml = m - l;
/* .......... FOR I=M-1 STEP -1 UNTIL L DO -- .......... */
i__2 = mml;
for (ii = 1; ii <= i__2; ++ii) {
i__ = m - ii;
p = g * h__;
r__ = p + e2[i__];
e2[i__ + 1] = s * r__;
s = e2[i__] / r__;
d__[i__ + 1] = h__ + s * (h__ + d__[i__]);
g = d__[i__] - e2[i__] / g;
if (g == 0.) {
g = b;
}
h__ = g * p / r__;
/* L200: */
}
e2[l] = s * g;
d__[l] = h__;
/* .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ........
.. */
if (h__ == 0.) {
goto L210;
}
if ((d__1 = e2[l], abs(d__1)) <= (d__2 = c__ / h__, abs(d__2))) {
goto L210;
}
e2[l] = h__ * e2[l];
if (e2[l] != 0.) {
goto L130;
}
L210:
p = d__[l] + f;
/* .......... ORDER EIGENVALUES .......... */
if (l == 1) {
goto L250;
}
/* .......... FOR I=L STEP -1 UNTIL 2 DO -- .......... */
i__2 = l;
for (ii = 2; ii <= i__2; ++ii) {
i__ = l + 2 - ii;
if (p >= d__[i__ - 1]) {
goto L270;
}
d__[i__] = d__[i__ - 1];
/* L230: */
}
L250:
i__ = 1;
L270:
d__[i__] = p;
/* L290: */
}
goto L1001;
/* .......... SET ERROR -- NO CONVERGENCE TO AN */
/* EIGENVALUE AFTER 30 ITERATIONS .......... */
L1000:
*ierr = l;
L1001:
return 0;
} /* tqlrat_ */
syntax highlighted by Code2HTML, v. 0.9.1