/* tred2.f -- translated by f2c (version 19961017).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int tred2_(integer *nm, integer *n, doublereal *a,
doublereal *d__, doublereal *e, doublereal *z__)
{
/* System generated locals */
integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2, i__3;
doublereal d__1;
/* Builtin functions */
double d_sign(doublereal *, doublereal *);
/* Local variables */
static doublereal f, g, h__;
static integer i__, j, k, l;
static doublereal scale, hh;
static integer ii, jp1;
/* THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2, */
/* NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. */
/* HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */
/* THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A */
/* SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING */
/* ORTHOGONAL SIMILARITY TRANSFORMATIONS. */
/* ON INPUT */
/* NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/* ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/* DIMENSION STATEMENT. */
/* N IS THE ORDER OF THE MATRIX. */
/* A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE */
/* LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. */
/* ON OUTPUT */
/* D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX. */
/* E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL */
/* MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO. */
/* Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX */
/* PRODUCED IN THE REDUCTION. */
/* A AND Z MAY COINCIDE. IF DISTINCT, A IS UNALTERED. */
/* QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/* MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
*/
/* THIS VERSION DATED AUGUST 1983. */
/* ------------------------------------------------------------------
*/
/* Parameter adjustments */
z_dim1 = *nm;
z_offset = z_dim1 + 1;
z__ -= z_offset;
--e;
--d__;
a_dim1 = *nm;
a_offset = a_dim1 + 1;
a -= a_offset;
/* Function Body */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n;
for (j = i__; j <= i__2; ++j) {
/* L80: */
z__[j + i__ * z_dim1] = a[j + i__ * a_dim1];
}
d__[i__] = a[*n + i__ * a_dim1];
/* L100: */
}
if (*n == 1) {
goto L510;
}
/* .......... FOR I=N STEP -1 UNTIL 2 DO -- .......... */
i__1 = *n;
for (ii = 2; ii <= i__1; ++ii) {
i__ = *n + 2 - ii;
l = i__ - 1;
h__ = 0.;
scale = 0.;
if (l < 2) {
goto L130;
}
/* .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... */
i__2 = l;
for (k = 1; k <= i__2; ++k) {
/* L120: */
scale += (d__1 = d__[k], abs(d__1));
}
if (scale != 0.) {
goto L140;
}
L130:
e[i__] = d__[l];
i__2 = l;
for (j = 1; j <= i__2; ++j) {
d__[j] = z__[l + j * z_dim1];
z__[i__ + j * z_dim1] = 0.;
z__[j + i__ * z_dim1] = 0.;
/* L135: */
}
goto L290;
L140:
i__2 = l;
for (k = 1; k <= i__2; ++k) {
d__[k] /= scale;
h__ += d__[k] * d__[k];
/* L150: */
}
f = d__[l];
d__1 = sqrt(h__);
g = -d_sign(&d__1, &f);
e[i__] = scale * g;
h__ -= f * g;
d__[l] = f - g;
/* .......... FORM A*U .......... */
i__2 = l;
for (j = 1; j <= i__2; ++j) {
/* L170: */
e[j] = 0.;
}
i__2 = l;
for (j = 1; j <= i__2; ++j) {
f = d__[j];
z__[j + i__ * z_dim1] = f;
g = e[j] + z__[j + j * z_dim1] * f;
jp1 = j + 1;
if (l < jp1) {
goto L220;
}
i__3 = l;
for (k = jp1; k <= i__3; ++k) {
g += z__[k + j * z_dim1] * d__[k];
e[k] += z__[k + j * z_dim1] * f;
/* L200: */
}
L220:
e[j] = g;
/* L240: */
}
/* .......... FORM P .......... */
f = 0.;
i__2 = l;
for (j = 1; j <= i__2; ++j) {
e[j] /= h__;
f += e[j] * d__[j];
/* L245: */
}
hh = f / (h__ + h__);
/* .......... FORM Q .......... */
i__2 = l;
for (j = 1; j <= i__2; ++j) {
/* L250: */
e[j] -= hh * d__[j];
}
/* .......... FORM REDUCED A .......... */
i__2 = l;
for (j = 1; j <= i__2; ++j) {
f = d__[j];
g = e[j];
i__3 = l;
for (k = j; k <= i__3; ++k) {
/* L260: */
z__[k + j * z_dim1] = z__[k + j * z_dim1] - f * e[k] - g *
d__[k];
}
d__[j] = z__[l + j * z_dim1];
z__[i__ + j * z_dim1] = 0.;
/* L280: */
}
L290:
d__[i__] = h__;
/* L300: */
}
/* .......... ACCUMULATION OF TRANSFORMATION MATRICES .......... */
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
l = i__ - 1;
z__[*n + l * z_dim1] = z__[l + l * z_dim1];
z__[l + l * z_dim1] = 1.;
h__ = d__[i__];
if (h__ == 0.) {
goto L380;
}
i__2 = l;
for (k = 1; k <= i__2; ++k) {
/* L330: */
d__[k] = z__[k + i__ * z_dim1] / h__;
}
i__2 = l;
for (j = 1; j <= i__2; ++j) {
g = 0.;
i__3 = l;
for (k = 1; k <= i__3; ++k) {
/* L340: */
g += z__[k + i__ * z_dim1] * z__[k + j * z_dim1];
}
i__3 = l;
for (k = 1; k <= i__3; ++k) {
z__[k + j * z_dim1] -= g * d__[k];
/* L360: */
}
}
L380:
i__3 = l;
for (k = 1; k <= i__3; ++k) {
/* L400: */
z__[k + i__ * z_dim1] = 0.;
}
/* L500: */
}
L510:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = z__[*n + i__ * z_dim1];
z__[*n + i__ * z_dim1] = 0.;
/* L520: */
}
z__[*n + *n * z_dim1] = 1.;
e[1] = 0.;
return 0;
} /* tred2_ */
syntax highlighted by Code2HTML, v. 0.9.1