/* tred2.f -- translated by f2c (version 19961017).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Subroutine */ int tred2_(integer *nm, integer *n, doublereal *a, 
	doublereal *d__, doublereal *e, doublereal *z__)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);

    /* Local variables */
    static doublereal f, g, h__;
    static integer i__, j, k, l;
    static doublereal scale, hh;
    static integer ii, jp1;



/*     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2, */
/*     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON. */
/*     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971). */

/*     THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A */
/*     SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING */
/*     ORTHOGONAL SIMILARITY TRANSFORMATIONS. */

/*     ON INPUT */

/*        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL */
/*          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM */
/*          DIMENSION STATEMENT. */

/*        N IS THE ORDER OF THE MATRIX. */

/*        A CONTAINS THE REAL SYMMETRIC INPUT MATRIX.  ONLY THE */
/*          LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED. */

/*     ON OUTPUT */

/*        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX. */

/*        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL */
/*          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO. */

/*        Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX */
/*          PRODUCED IN THE REDUCTION. */

/*        A AND Z MAY COINCIDE.  IF DISTINCT, A IS UNALTERED. */

/*     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW, */
/*     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY 
*/

/*     THIS VERSION DATED AUGUST 1983. */

/*     ------------------------------------------------------------------ 
*/

    /* Parameter adjustments */
    z_dim1 = *nm;
    z_offset = z_dim1 + 1;
    z__ -= z_offset;
    --e;
    --d__;
    a_dim1 = *nm;
    a_offset = a_dim1 + 1;
    a -= a_offset;

    /* Function Body */
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {

	i__2 = *n;
	for (j = i__; j <= i__2; ++j) {
/* L80: */
	    z__[j + i__ * z_dim1] = a[j + i__ * a_dim1];
	}

	d__[i__] = a[*n + i__ * a_dim1];
/* L100: */
    }

    if (*n == 1) {
	goto L510;
    }
/*     .......... FOR I=N STEP -1 UNTIL 2 DO -- .......... */
    i__1 = *n;
    for (ii = 2; ii <= i__1; ++ii) {
	i__ = *n + 2 - ii;
	l = i__ - 1;
	h__ = 0.;
	scale = 0.;
	if (l < 2) {
	    goto L130;
	}
/*     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) .......... */
	i__2 = l;
	for (k = 1; k <= i__2; ++k) {
/* L120: */
	    scale += (d__1 = d__[k], abs(d__1));
	}

	if (scale != 0.) {
	    goto L140;
	}
L130:
	e[i__] = d__[l];

	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
	    d__[j] = z__[l + j * z_dim1];
	    z__[i__ + j * z_dim1] = 0.;
	    z__[j + i__ * z_dim1] = 0.;
/* L135: */
	}

	goto L290;

L140:
	i__2 = l;
	for (k = 1; k <= i__2; ++k) {
	    d__[k] /= scale;
	    h__ += d__[k] * d__[k];
/* L150: */
	}

	f = d__[l];
	d__1 = sqrt(h__);
	g = -d_sign(&d__1, &f);
	e[i__] = scale * g;
	h__ -= f * g;
	d__[l] = f - g;
/*     .......... FORM A*U .......... */
	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
/* L170: */
	    e[j] = 0.;
	}

	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
	    f = d__[j];
	    z__[j + i__ * z_dim1] = f;
	    g = e[j] + z__[j + j * z_dim1] * f;
	    jp1 = j + 1;
	    if (l < jp1) {
		goto L220;
	    }

	    i__3 = l;
	    for (k = jp1; k <= i__3; ++k) {
		g += z__[k + j * z_dim1] * d__[k];
		e[k] += z__[k + j * z_dim1] * f;
/* L200: */
	    }

L220:
	    e[j] = g;
/* L240: */
	}
/*     .......... FORM P .......... */
	f = 0.;

	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
	    e[j] /= h__;
	    f += e[j] * d__[j];
/* L245: */
	}

	hh = f / (h__ + h__);
/*     .......... FORM Q .......... */
	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
/* L250: */
	    e[j] -= hh * d__[j];
	}
/*     .......... FORM REDUCED A .......... */
	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
	    f = d__[j];
	    g = e[j];

	    i__3 = l;
	    for (k = j; k <= i__3; ++k) {
/* L260: */
		z__[k + j * z_dim1] = z__[k + j * z_dim1] - f * e[k] - g * 
			d__[k];
	    }

	    d__[j] = z__[l + j * z_dim1];
	    z__[i__ + j * z_dim1] = 0.;
/* L280: */
	}

L290:
	d__[i__] = h__;
/* L300: */
    }
/*     .......... ACCUMULATION OF TRANSFORMATION MATRICES .......... */
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	l = i__ - 1;
	z__[*n + l * z_dim1] = z__[l + l * z_dim1];
	z__[l + l * z_dim1] = 1.;
	h__ = d__[i__];
	if (h__ == 0.) {
	    goto L380;
	}

	i__2 = l;
	for (k = 1; k <= i__2; ++k) {
/* L330: */
	    d__[k] = z__[k + i__ * z_dim1] / h__;
	}

	i__2 = l;
	for (j = 1; j <= i__2; ++j) {
	    g = 0.;

	    i__3 = l;
	    for (k = 1; k <= i__3; ++k) {
/* L340: */
		g += z__[k + i__ * z_dim1] * z__[k + j * z_dim1];
	    }

	    i__3 = l;
	    for (k = 1; k <= i__3; ++k) {
		z__[k + j * z_dim1] -= g * d__[k];
/* L360: */
	    }
	}

L380:
	i__3 = l;
	for (k = 1; k <= i__3; ++k) {
/* L400: */
	    z__[k + i__ * z_dim1] = 0.;
	}

/* L500: */
    }

L510:
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__[i__] = z__[*n + i__ * z_dim1];
	z__[*n + i__ * z_dim1] = 0.;
/* L520: */
    }

    z__[*n + *n * z_dim1] = 1.;
    e[1] = 0.;
    return 0;
} /* tred2_ */



syntax highlighted by Code2HTML, v. 0.9.1