#include "mrilib.h"
/*------------------------------------------------------------
Set the one-sided tail probability at which we will cutoff
the unusuality test.
--------------------------------------------------------------*/
static float zstar = 0.0 ; /* the actual cutoff */
static float pstar = 0.0 ; /* tail probability */
void set_unusuality_tail( float p )
{
if( p > 0.0 && p < 1.0 ){
zstar = qginv(p) ;
pstar = p ;
}
return ;
}
/*------------------------------------------------------------
Inputs: rr[0..nr-1] = array of correlation coefficients.
--------------------------------------------------------------*/
#undef TANHALL
float unusuality( int nr , float * rr )
{
int ii , nzero , mzero ;
float * zz , * aa ;
float zmid,zsig,zmed, uval, fac, zrat, ff,fp, ss,ds,pp,ee , sigma ;
#ifndef TANHALL
float rmid , rcut ;
#endif
if( nr < 1000 || rr == NULL ) return 0.0 ;
/*-- make workspace --*/
zz = (float *) malloc(sizeof(float)*nr*2) ; aa = zz + nr ;
if( zstar <= 0.0 ){
char * cp = getenv("PTAIL") ;
float pp = 0.01 ;
if( cp != NULL ){
float xx = strtod( cp , NULL ) ;
if( xx > 0.0 && xx < 1.0 ) pp = xx ;
}
set_unusuality_tail( pp ) ;
}
/*-- copy data into workspace, converting to atanh --*/
memcpy( zz , rr , sizeof(float)*nr ) ;
qsort_float( nr , zz ) ; /* sort now */
/*- trim off 1's (perfect correlations) -*/
for( ii=nr-1 ; ii > 0 && zz[ii] > 0.999 ; ii-- ) ; /* nada */
if( ii == 0 ){ free(zz) ; return 0.0 ; } /* shouldn't happen */
nr = ii+1 ; /* the trim */
#ifdef TANHALL
for( ii=0 ; ii < nr ; ii++ ) zz[ii] = atanh(rr[ii]) ;
#endif
/*-- find median of zz [brute force sort] --*/
if( nr%2 == 1 ) /* median */
zmid = zz[nr/2] ;
else
zmid = 0.5 * ( zz[nr/2] + zz[nr/2-1] ) ;
#ifdef TANHALL
for( ii=0 ; ii < nr ; ii++ ) aa[ii] = fabs(zz[ii]-zmid) ;
#else
rmid = zmid ; zmid = atanh(zmid) ;
for( ii=0 ; ii < nr ; ii++ )
aa[ii] = fabs( (zz[ii]-rmid)/(1.0-zz[ii]*rmid) ) ;
#endif
/*-- find MAD of zz --*/
qsort_float( nr , aa ) ;
if( nr%2 == 1 ) /* MAD = median absolute deviation */
zmed = aa[nr/2] ;
else
zmed = 0.5 * ( aa[nr/2] + aa[nr/2-1] ) ;
#ifndef TANHALL
zmed = atanh(zmed) ;
#endif
zsig = 1.4826 * zmed ; /* estimate standard deviation of zz */
/* 1/1.4826 = sqrt(2)*erfinv(0.5) */
if( zsig <= 0.0 ){ /* should not happen */
free(zz) ; return 0.0 ;
}
/*-- normalize zz (is already sorted) --*/
/*-- then, find values >= zstar --*/
fac = 1.0 / zsig ;
#ifdef TANHALL
for( ii=0 ; ii < nr ; ii++ ) zz[ii] = fac * ( zz[ii] - zmid ) ;
for( ii=nr-1 ; ii > 0 ; ii-- ) if( zz[ii] < zstar ) break ;
nzero = ii+1 ; mzero = nr - nzero ;
#else
rcut = tanh( zsig * zstar + zmid ) ;
for( ii=nr-1 ; ii > 0 ; ii-- ){
if( zz[ii] < rcut ) break ;
else zz[ii] = fac * ( atanh(zz[ii]) - zmid ) ;
}
nzero = ii+1 ; mzero = nr - nzero ;
#if 0
fprintf(stderr,"uuu: nr=%d rcut=%g mzero=%d\n",nr,rcut,mzero) ;
#endif
#endif
if( nzero < 2 || mzero < MAX(1.0,pstar*nr) ){ /* too weird */
free(zz) ; return 0.0 ;
}
/*-- compute sigma-tilde squared --*/
zsig = 0.0 ;
for( ii=nzero ; ii < nr ; ii++ ) zsig += zz[ii]*zz[ii] ;
zsig = zsig / mzero ;
/*-- set up to compute f(s) --*/
#define SQRT_2PI 2.5066283
zrat = zstar*zstar / zsig ;
fac = ( zrat * nzero ) / ( SQRT_2PI * mzero ) ;
ss = zstar ; /* initial guess for s = zstar/sigma */
/*-- Newton's method [almost] --*/
#undef PHI
#define PHI(s) (1.0-0.5*normal_t2p(ss)) /* N(0,1) cdf */
for( ii=0 ; ii < 5 ; ii++ ){
pp = PHI(ss) ; /* Phi(ss) \approx 1 */
ee = exp(-0.5*ss*ss) ;
ff = ss*ss - (fac/pp) * ss * ee - zrat ; /* f(s) */
fp = 2.0*ss + (fac/pp) * ee * (ss*ss-1.0) ; /* f'(s) */
ds = ff / fp ; /* Newton step */
#if 0
fprintf(stderr,"Newton: ss=%g ds=%g ff=%g fp=%g pp=%g\n",ss,ds,ff,fp,pp) ;
#endif
ss -= ds ; /* update */
}
sigma = zstar / ss ; /* actual estimate of sigma */
/* from the upper tail data */
if( sigma <= 1.0 ){ /* the boring case */
free(zz) ; return 0.0 ;
}
/*-- compute the log-likelihood difference next --*/
uval = nzero * log( PHI(ss)/(1.0-pstar) )
- mzero * ( log(sigma) + 0.5 * zsig * (1.0/(sigma*sigma)-1.0) ) ;
/*-- done! --*/
free(zz) ; return uval ;
}
syntax highlighted by Code2HTML, v. 0.9.1