/*******************************************************************************
*
* McStas, the neutron ray-tracing package: Curved_Monochromator.comp
* Copyright 1999-2001 Risoe National Laboratory, Roskilde, Denmark
*
* Component: Curved_Monochromator
*
* %I
*
* Written by: Emmanuel Farhi
* Date: Aug. 24th 2001
* Version: $Revision: 1.12 $
* Origin: McStas 1.5/ILL
* Modified by: EF, Aug. 24th 2001: From Mosaic_anisotropic and Mon_2foc
* by Kristian Nielsen and Peter Link
* Modified by: EF, 2004. Renamed to Monochromator_curved
*
* Double bent multiple crystal slabs with anisotropic gaussian mosaic.
*
* %Description
* Double bent infinitely thin mosaic crystal, useful as a monochromator or
* analyzer. which uses a small-mosaicity approximation as well
* as the approximation vy^2 << vz^2 + vx^2, and taking into account higher
* order scattering. The mosaic is anisotropic gaussian, with different FWHMs
* in the Y and Z directions. The scattering vector is perpendicular to the
* surface. For an unrotated monochromator component, the crystal plane lies in
* the y-z plane (ie. parallel to the beam). The component also works in
* transmission.
* When curvatures are set to 0, the monochromator is flat.
* The curvatures approximation for parallel beam focusing to distance L, with
* monochromator rotation angle A1 are:
* RV = 2*L*sin(DEG2RAD*A1);
* RH = 2*L/sin(DEG2RAD*A1);
*
* When you rotate the component by A1 = asin(Q/2/Ki)*RAD2DEG, do not forget to
* rotate the following components by A2=2*A1 (for 1st order) !
* OBSOLETE: rather use optics/Monochromator_curved
*
* Example: Curved_Monochromator(zwidth=0.01, yheight=0.01, gap=0.0005,
* NH=11, NV=11, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734)
*
* Example values for lattice parameters
* PG 002 DM=3.355 AA (Highly Oriented Pyrolytic Graphite)
* PG 004 DM=1.607 AA
* Heusler 111 DM=3.362 AA (Cu2MnAl)
* CoFe DM=1.771 AA (Co0.92Fe0.08)
* Ge 311 DM=1.714 AA
* Si 111 DM=3.135 AA
* Cu 111 DM=2.087 AA
* Cu 002 DM=1.807 AA
* Cu 220 DM=1.278 AA
* Cu 111 DM=2.095 AA
*
* %Parameters
* INPUT PARAMETERS:
*
* zwidth: horizontal width of an individual slab (m)
* yheight: vertical height of an individual slab (m)
* gap: typical gap between adjacent slabs (m)
* NH: number of slabs horizontal (columns)
* NV: number of slabs vertical (rows)
* mosaich: Horisontal mosaic FWHM (arc minutes)
* mosaicv: Vertical mosaic FWHM (arc minutes)
* r0: Maximum reflectivity (1)
* Q: Scattering vector (AA-1)
* RV: radius of vertical focussing (m). flat for 0.
* RH: radius of horizontal focussing (m). flat for 0.
*
* optional parameters
* DM: monochromator d-spacing (Angstrom) instead of Q=2*pi/DM
* mosaic: sets mosaich=mosaicv (arc minutes)
* width: total width of monochromator (m)
* height: total height of monochromator (m)
*
* %Link
* Additional note from Peter Link.
* Mosaic_anisotropic by Kristian Nielsen
* Mon_2foc by Peter Link
*
* %End
*******************************************************************************/
DEFINE COMPONENT Curved_Monochromator
DEFINITION PARAMETERS ()
SETTING PARAMETERS (zwidth=0.01, yheight=0.01, gap=0.0005, NH=11, NV=11, mosaich=30.0, mosaicv=30.0, r0=0.7, Q=1.8734, RV=0, RH=0, DM=0, mosaic=0, width=0, height=0,ywidth=0)
OUTPUT PARAMETERS (mos_rms_y, mos_rms_z, mos_rms_max, mono_Q,SlabWidth,SlabHeight)
STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)
SHARE
%{
#ifndef GAUSS
/* Define these arrays only once for all instances. */
/* Values for Gauss quadrature. Taken from Brice Carnahan, H. A. Luther and
James O Wilkes, "Applied numerical methods", Wiley, 1996, page 103. */
double Gauss_X[] = {-0.987992518020485, 0.937273392400706, 0.848206583410427,
0.724417731360170, 0.570972172608539, 0.394151347077563,
0.201194093997435, 0, 0.201194093997435,
0.394151347077563, 0.570972172608539, 0.724417731360170,
0.848206583410427, 0.937273392400706, 0.987992518020485};
double Gauss_W[] = {0.030753241996117, 0.070366047488108, 0.107159220467172,
0.139570677926154, 0.166269205816994, 0.186161000115562,
0.198431485327111, 0.202578241925561, 0.198431485327111,
0.186161000115562, 0.166269205816994, 0.139570677926154,
0.107159220467172, 0.070366047488108, 0.030753241996117};
#define GAUSS(x,mean,rms) \
(exp(-((x)-(mean))*((x)-(mean))/(2*(rms)*(rms)))/(sqrt(2*PI)*(rms)))
#endif
%}
DECLARE
%{
double mos_rms_y; /* root-mean-square of mosaic, in radians */
double mos_rms_z;
double mos_rms_max;
double mono_Q;
double SlabWidth, SlabHeight;
%}
INITIALIZE
%{
if (mosaic != 0) {
mos_rms_y = MIN2RAD*mosaic/sqrt(8*log(2));
mos_rms_z = mos_rms_y; }
else {
mos_rms_y = MIN2RAD*mosaich/sqrt(8*log(2));
mos_rms_z = MIN2RAD*mosaicv/sqrt(8*log(2)); }
mos_rms_max = mos_rms_y > mos_rms_z ? mos_rms_y : mos_rms_z;
mono_Q = Q;
if (DM != 0) mono_Q = 2*PI/DM;
if (mono_Q == 0) { fprintf(stderr,"Curved_Monochromator: %s: Error scattering vector Q = 0\n", NAME_CURRENT_COMP); exit(-1); }
if (r0 == 0) { fprintf(stderr,"Curved_Monochromator: %s: Error reflectivity r0 is null\n", NAME_CURRENT_COMP); exit(-1); }
if (ywidth != 0) yheight = ywidth; /* compatibility with Mon_2foc */
if (width == 0) SlabWidth = zwidth;
else SlabWidth = (width+gap)/NH - gap;
if (height == 0) SlabHeight = yheight;
else SlabHeight = (height+gap)/NV - gap;
%}
TRACE
%{
double zmin,zmax,ymin,ymax,zp,yp,row,col;
double tilth,tiltv; /* used to calculate tilt angle of slab */
double sna,snb,csa,csb,vxp,vyp,vzp;
double y1,z1,t1,dt,kix,kiy,kiz,ratio,order,q0x,k,q0,theta;
double bx,by,bz,kux,kuy,kuz,ax,ay,az,phi;
double cos_2theta,k_sin_2theta,cos_phi,sin_phi,kfx,kfy,kfz,q_x,q_y,q_z;
double delta,p_reflect,total,c1x,c1y,c1z,width,ds_factor, tmp;
int i;
if(vx != 0.0 && (dt = -x/vx) >= 0.0)
{ /* Moving towards crystal? */
y1 = y + vy*dt; /* Propagate to crystal plane */
z1 = z + vz*dt;
t1 = t + dt;
zmax = ((NH*(SlabWidth+gap))-gap)/2;
zmin = -zmax;
ymax = ((NV*(SlabHeight+gap))-gap)/2;
ymin = -ymax;
zp = fmod ( (z1-zmin),(SlabWidth+gap) );
yp = fmod ( (y1-ymin),(SlabHeight+gap) );
/* hit a slab or a gap ? */
if (z1>zmin && z1ymin && y1 2*k/mono_Q)
order--;
if(order > 0) /* Bragg scattering possible? */
{
q0 = order*mono_Q;
q0x = ratio < 0 ? -q0 : q0;
theta = asin(q0/(2*k)); /* Actual bragg angle */
/* Make MC choice: reflect or transmit? */
delta = asin(fabs(kux)) - theta;
p_reflect = fabs(r0)*exp(-kiz*kiz/(kiy*kiy + kiz*kiz)*(delta*delta)/
(2*mos_rms_y*mos_rms_y))*
exp(-kiy*kiy/(kiy*kiy + kiz*kiz)*(delta*delta)/
(2*mos_rms_z*mos_rms_z));
tmp = rand01();
if(tmp <= p_reflect)
{ /* Reflect */
cos_2theta = cos(2*theta);
k_sin_2theta = k*sin(2*theta);
/* Get unit normal to plane containing ki and most probable kf */
vec_prod(bx, by, bz, kix, kiy, kiz, q0x, 0, 0);
NORM(bx,by,bz);
bx *= k_sin_2theta;
by *= k_sin_2theta;
bz *= k_sin_2theta;
/* Get unit vector normal to ki and b */
vec_prod(ax, ay, az, bx, by, bz, kux, kuy, kuz);
/* Compute the total scattering probability at this ki */
total = 0;
/* Choose integration limits, using Gaussian tail cut-off at 5 times
* sigma. The radius of the Debye-Scherrer cone is smaller by a
* factor 1/cos(theta) than the radius of the (partial) sphere
* describing the possible orientations of Q due to mosaicity, so we
* must use an integration width 1/cos(theta) greater than 5 times
* the mosaic. */
ds_factor = 1/cos(theta);
width = 5*mos_rms_max*ds_factor;
c1x = kix*(cos_2theta-1);
c1y = kiy*(cos_2theta-1);
c1z = kiz*(cos_2theta-1);
for(i = 0; i < (sizeof(Gauss_X)/sizeof(double)); i++)
{
phi = width*Gauss_X[i];
cos_phi = cos(phi);
sin_phi = sin(phi);
q_x = c1x + cos_phi*ax + sin_phi*bx;
q_y = c1y + cos_phi*ay + sin_phi*by;
q_z = c1z + cos_phi*az + sin_phi*bz;
p_reflect = GAUSS((q_z/q_x),0,mos_rms_y)*
GAUSS((q_y/q_x),0,mos_rms_z);
total += Gauss_W[i]*p_reflect;
}
total *= width;
/* Choose point on Debye-Scherrer cone. Sample from a Gaussian of
* width 1/cos(theta) greater than the mosaic and correct for any
* error by adjusting the neutron weight later. */
phi = ds_factor*mos_rms_max*randnorm();
/* Compute final wave vector kf and scattering vector q = ki - kf */
cos_phi = cos(phi);
sin_phi = sin(phi);
q_x = c1x + cos_phi*ax + sin_phi*bx;
q_y = c1y + cos_phi*ay + sin_phi*by;
q_z = c1z + cos_phi*az + sin_phi*bz;
p_reflect = GAUSS((q_z/q_x),0,mos_rms_y)*
GAUSS((q_y/q_x),0,mos_rms_z);
x = 0.0;
y = y1;
z = z1;
t = t1;
SCATTER;
vxp = K2V*(kix+q_x);
vyp = K2V*(kiy+q_y);
vzp = K2V*(kiz+q_z);
p *= p_reflect/(total*GAUSS(phi,0,ds_factor*mos_rms_max));
/* rotate v coords back */
vx = vxp*csb*csa-vyp*snb*csa+vzp*sna;
vy = vxp*snb +vyp*csb;
vz = -vxp*csb*sna+vyp*snb*sna+vzp*csa;
SCATTER;
} /* End MC choice to reflect or transmit neutron (if rand01) */
/* else transmit neutron */
} /* End bragg scattering possible (if order) */
} /* End intersect the crystal (if z1) */
} /* End neutron moving towards crystal (if vx)*/
%}
MCDISPLAY
%{
double zmin,zmax,ymin,ymax;
int ih,iv;
double xt, xt1, yt, yt1;
magnify("xy");
for(ih = 0; ih < NH; ih++)
{
for(iv = 0; iv < NV; iv++)
{
zmin = (SlabWidth+gap)*(ih-NH/2.0)+gap/2;
zmax = zmin+SlabWidth;
ymin = (SlabHeight+gap)*(iv-NV/2.0)+gap/2;
ymax = ymin+SlabHeight;
if (RH)
{ xt = zmin*zmin/RH;
xt1 = zmax*zmax/RH; }
else { xt = 0; xt1 = 0; }
if (RV)
{ yt = ymin*ymin/RV;
yt1 = ymax*ymax/RV; }
else { yt = 0; yt1 = 0; }
multiline(5, xt+yt, (double)ymin, (double)zmin,
xt+yt1, (double)ymax, (double)zmin,
xt1+yt1, (double)ymax, (double)zmax,
xt1+yt, (double)ymin, (double)zmax,
xt+yt, (double)ymin, (double)zmin);
}
}
%}
END