/*******************************************************************************
*
* McStas, the neutron ray-tracing package: Mon_2foc.comp
* Copyright 1999-2001 Risoe National Laboratory, Roskilde, Denmark
* Peter Link, IPC University of G�tingen
*
* Component: Mon_2foc
*
* %Identification
* Written by: Peter Link.
* Date: Feb. 12,1999
* Origin: McStas 1.5/Uni. Gottingen (Germany)
* version: 1.0
* Modified by: EF, 2004. Renamed as Monochromator_2foc
*
* Double bent monochromator with multiple slabs
*
* %Description
* Double bent monochromator which uses a small-mosaicity approximation as well
* as the approximation vy^2 << vz^2 + vx^2.
* Second order scattering is neglected.
* For an unrotated monochromator component, the crystal plane lies in the y-z
* plane (ie. parallel to the beam).
* When curvatures are set to 0, the monochromator is flat.
* The curvatures approximation for parallel beam focusing to distance L, with
* monochromator rotation angle A1 are:
* RV = 2*L*sin(DEG2RAD*A1);
* RH = 2*L/sin(DEG2RAD*A1);
*
* When you rotate the component by A1 = asin(Q/2/Ki)*RAD2DEG, do not forget to
* rotate the following components by A2=2*A1 (for 1st order) !
* OBSOLETE: rather use optics/Monochromator_2foc
*
* Example: Mon_2foc(zwidth=0.02, yheight=0.02, gap=0.0005, NH=11, NV=11,
* mosaich=30, mosaicv=30, r0=0.7, Q=1.8734)
*
* Added double bent feature by: Peter Link Feb. 12,1999
* corrected bug in rotation of v-coords: Peter Link Sep. 24. 1999
*
* %Parameters
* INPUT PARAMETERS:
*
* zwidth: horizontal width of an individual slab (m)
* yheight: vertical height of an individual slab (m)
* gap: typical gap between adjacent slabs (m)
* NH: number of slabs horizontal (columns)
* NV: number of slabs vertical (rows)
* mosaich: Horisontal mosaic FWHM (arc minutes)
* mosaicv: Vertical mosaic FWHM (arc minutes)
* r0: Maximum reflectivity (1)
* Q: Scattering vector (AA-1)
* RV: radius of vertical focussing (m). flat for 0.
* RH: radius of horizontal focussing (m). flat for 0.
*
* optional parameters
* DM: monochromator d-spacing instead of Q=2*pi/DM (Angstrom)
* ywidth: compatibility parameter with older Mon_2foc (m)
*
* %Link
* Additional note from Peter Link.
*
* %End
*******************************************************************************/
DEFINE COMPONENT Mon_2foc
DEFINITION PARAMETERS ()
SETTING PARAMETERS (zwidth, yheight=0.02, gap=0.0005, NH=11, NV=11, mosaich=30, mosaicv=30, r0=0.7, Q=1.8734, RV=0, RH=0, DM=0, ywidth=0)
OUTPUT PARAMETERS (mono_Q)
STATE PARAMETERS (x,y,z,vx,vy,vz,t,s1,s2,p)
DECLARE
%{
#ifndef DIV_CUTOFF
#define DIV_CUTOFF 2 /* ~ 10^-5 cutoff. */
#endif
double mono_Q;
%}
INITIALIZE
%{
mono_Q = Q;
if (DM != 0) mono_Q = 2*PI/DM;
if (ywidth != 0) yheight = ywidth; /* compatibility with old Mon_2foc */
%}
TRACE
%{
double dphi,tmp1,tmp2,tmp3,tmp4,vratio,phi,theta0,theta,v,cs,sn;
double zmin,zmax,ymin,ymax,zp,yp,row,col;
double tilth,tiltv; /* used to calculate tilt angle of slab */
double sna,snb,csa,csb,vxp,vyp,vzp;
double old_x = x, old_y = y, old_z = z, old_t = t;
double dt;
if(vx != 0.0 && (dt = -x/vx) >= 0.0)
{
zmax = ((NH*(zwidth+gap))-gap)/2;
zmin = -1*zmax;
ymax = ((NV*(yheight+gap))-gap)/2;
ymin = -1*ymax;
y += vy*dt; z += vz*dt; t += dt; x = 0.0;
zp = fmod ( (z-zmin),(zwidth+gap) );
yp = fmod ( (y-ymin),(yheight+gap) );
/* hit a slab or a gap ? */
if (z>zmin && zymin && y DIV_CUTOFF)
{
x = old_x; y = old_y; z = old_z; t = old_t;
}
else
{
p *= r0*exp(-tmp3*tmp3*4*log(2)); /* Use mosaics */
tmp1 = 2*theta;
cs = cos(tmp1);
sn = sin(tmp1);
tmp2 = cs*vxp - sn*vzp;
vyp = vyp;
/* vz = cs*vz + sn*vx; diese Zeile wurde durch die folgende ersetzt */
tmp4 = vyp/vzp; /* korrigiert den schr�en Einfall aufs Pl�tchen */
vzp = cs*(-vyp*sin(tmp4)+vzp*cos(tmp4)) + sn*vxp;
vxp = tmp2;
/* Second: scatering out of plane.
Approximation is that Debye-Scherrer cone is a plane */
phi = atan2(vyp,vzp); /* out-of plane angle */
dphi = (MIN2RAD*mosaicv)/(2*sqrt(2*log(2)))*randnorm(); /* MC choice: */
/* Vertical angle of the crystallite */
vyp = vzp*tan(phi+2*dphi*sin(theta));
vratio = v/sqrt(vxp*vxp+vyp*vyp+vzp*vzp);
vzp = vzp*vratio;
vyp = vyp*vratio; /* Renormalize v */
vxp = vxp*vratio;
/* rotate v coords back */
vx = vxp*csb*csa-vyp*snb*csa+vzp*sna;
vy = vxp*snb+vyp*csb;
vz = -vxp*csb*sna+vyp*snb*sna+vzp*csa;
/* v=sqrt(vx*vx+vy*vy+vz*vz); */
SCATTER;
}
}
else
{
x = old_x; y = old_y; z = old_z; t = old_t;
}
}
%}
MCDISPLAY
%{
double zmin,zmax,ymin,ymax;
int ih,iv;
double xt, xt1, yt, yt1;
magnify("xy");
for(ih = 0; ih < NH; ih++)
{
for(iv = 0; iv < NV; iv++)
{
zmin = (zwidth+gap)*(ih-NH/2.0)+gap/2;
zmax = zmin+zwidth;
ymin = (yheight+gap)*(iv-NV/2.0)+gap/2;
ymax = ymin+yheight;
if (RH)
{ xt = zmin*zmin/RH;
xt1 = zmax*zmax/RH; }
else { xt = 0; xt1 = 0; }
if (RV)
{ yt = ymin*ymin/RV;
yt1 = ymax*ymax/RV; }
else { yt = 0; yt1 = 0; }
multiline(5, xt+yt, (double)ymin, (double)zmin,
xt+yt1, (double)ymax, (double)zmin,
xt1+yt1, (double)ymax, (double)zmax,
xt1+yt, (double)ymin, (double)zmax,
xt+yt, (double)ymin, (double)zmin);
}
}
%}
END