/********************************************************************************************/
/* Intersection.c (merger of YTSDefs.c and vectan.c)                                        */
/* Functions that calculate intersection points with various surfaces                       */
/*                                                                                          */
/* The free non-commercial use of these routines is granted providing due credit is given   */
/* to the authors:                                                                          */
/* Friedrich Streffer, Géza Zsigmond, Dietmar Wechsler,                                     */
/* Michael Fromme, Klaus Lieutenant, Sergey Manoshin                                        */ 
/*                                                                                          */
/* Change: K. L. 2002 JAN, reorganized routines                                                 */

#ifdef VT_GRAPH
# include "cpgplot.h"
extern int do_visualise;
#endif

#include <string.h>

#ifdef VITESS
 #include "intersection.h"
#else
 %include "intersection.h"
#endif


/***********************************************************************************/
/* global variables and constants                                                  */
/***********************************************************************************/

VectorType PVector[6] = {{1.0, 0.0, 0.0}, {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0},
                         {0.0,-1.0, 0.0}, { 0.0, 0.0, 1.0}, {0.0, 0.0,-1.0}};


/***********************************************************************************/
/* prototypes of local functions                                                   */
/***********************************************************************************/

double SolveQuadraticEq(double, double, double);



/***********************************************************************************/
/* global functions                                                                */
/***********************************************************************************/

/***************************************************************************************************/
/* This Function similar NeutronPlaneIntersection, but he is calculate new position of neutron
   in the plane (update) and RETURN time of flight of neutron
   Author: Manoshin Sergey, manoshin@hmi.de  20.02.01 */
/**************************************************************************************************/
double NeutronPlaneIntersection1(Neutron *ThisNeutron, Plane ThisPlane)
{
	double  Time, BB, CC, VelocityReal;
		
	/*	Velocity cm/ms, Time ms, Position cm	*/

	/*	Calculating real velocity  */
		
	VelocityReal = (double)(V_FROM_LAMBDA(ThisNeutron->Wavelength));


	BB = ThisPlane.A*ThisNeutron->Vector[0]
	  +ThisPlane.B*ThisNeutron->Vector[1]
	  +ThisPlane.C*ThisNeutron->Vector[2];
		
	BB = BB*VelocityReal;

	CC = ThisPlane.A*ThisNeutron->Position[0]
	  +ThisPlane.B*ThisNeutron->Position[1]
	  +ThisPlane.C*ThisNeutron->Position[2]
	  +ThisPlane.D;

	/***********************************************************************************/
	/* Now we must to decide equation for find */
	/* Time BB*Time + CC = 0 */
	/***********************************************************************************/
	if(BB != 0.0)
	{
		Time = -CC/BB;
	}
	else
	{
		Time = -1.0e4;
	}

	if (fabs(Time) < 1e-12)
		Time = 0.0;
		
	/***********************************************************************************/
	/* This part make move neutron in the time include gravity effect  */
	/***********************************************************************************/

	ThisNeutron->Position[0] = ThisNeutron->Position[0] + VelocityReal*Time*(ThisNeutron->Vector[0]);
	ThisNeutron->Position[1] = ThisNeutron->Position[1] + VelocityReal*Time*(ThisNeutron->Vector[1]);
	ThisNeutron->Position[2] = ThisNeutron->Position[2] + VelocityReal*Time*(ThisNeutron->Vector[2]);

	/* return Time; ms */

	return Time;
}


/***************************************************************************************************/
/* This Function similar NeutronPlaneIntersection, but he is include GRAVITY effect
   and calculate new position of neutron in the plane (update) and time of flight of neutron (return)
   Author: Manoshin Sergey, manoshin@hmi.de  12.02.01 */
/**************************************************************************************************/
double NeutronPlaneIntersectionGrav(Neutron *ThisNeutron, Plane ThisPlane)
{
	/***********************************************************************************/
	/* This part calculates the time of flight of neutron INCLUDE gravity with   */
	/* plane.									   */
	/***********************************************************************************/

	double  Time, AA, BB, CC, VelocityReal;
		
	/*	Make the koefficients of quadratic equation    */
	/*	G = 9.8 m/c**2, we need to cm/ms**2 (100/1000/1000)  */
	/*	Velocity cm/ms, Time ms, Position cm	*/

	/*	Calculating real velocity  */
		
	VelocityReal = (double)(V_FROM_LAMBDA(ThisNeutron->Wavelength));

	AA = -0.5*(G*1.0e-4)*ThisPlane.C;

	BB = ThisPlane.A*ThisNeutron->Vector[0]
	  +ThisPlane.B*ThisNeutron->Vector[1]
	  +ThisPlane.C*ThisNeutron->Vector[2];
		
	BB = BB*VelocityReal;

	CC = ThisPlane.A*ThisNeutron->Position[0]
	  +ThisPlane.B*ThisNeutron->Position[1]
	  +ThisPlane.C*ThisNeutron->Position[2]
	  +ThisPlane.D;

	/***********************************************************************************/
	/* Now we must to decide quadratic equation for find */
	/* Time AA*Time*Time + BB*Time + CC = 0 */
	/***********************************************************************************/

	Time = SolveQuadraticEq(AA,BB,CC);
		
	/***********************************************************************************/
	/* This part make move neutron in the time include gravity effect  */
	/***********************************************************************************/

	ThisNeutron->Position[0] = ThisNeutron->Position[0] + VelocityReal*Time*(ThisNeutron->Vector[0]);
	ThisNeutron->Position[1] = ThisNeutron->Position[1] + VelocityReal*Time*(ThisNeutron->Vector[1]);
	ThisNeutron->Position[2] = ThisNeutron->Position[2] + VelocityReal*Time*(ThisNeutron->Vector[2]);

	/* Include gravity */

	ThisNeutron->Position[2] = ThisNeutron->Position[2] - 0.5*(G*1.0e-4)*Time*Time;
	ThisNeutron->Vector[2] = ThisNeutron->Vector[2] - ((G*1.0e-4)*Time/VelocityReal);	
		
	/* return Time; ms */

	return Time;
}



/***********************************************************************************/
/* This subroutine calculates the angle between a directed line and a plane. The   */
/* formulae used can be found in any good mathematical handbook.                   */
/* (Modified by Manoshin Sergey for module of velocity not equal 1)                */	
/***********************************************************************************/
double	NeutronPlaneAngle2(Neutron *ThisNeutron, double AP, double BP, double CP)
{
	/* Revised calling parameter */

	double SinGamma=0.0;
	double Velmod;
	double ABC;
		
		
	Velmod = sqrt(ThisNeutron->Vector[0]*ThisNeutron->Vector[0]+
			ThisNeutron->Vector[1]*ThisNeutron->Vector[1] +
			ThisNeutron->Vector[2]*ThisNeutron->Vector[2]);
		
	ABC = sqrt(AP*AP + BP*BP + CP*CP);

	if (ABC != 0.0)
	{
		SinGamma = (AP*ThisNeutron->Vector[0] + BP*ThisNeutron->Vector[1] + CP*ThisNeutron->Vector[2])/ABC;
	}
		
					
	if (Velmod != 0.0)
	{				
		SinGamma = SinGamma/Velmod;
	}

	return(asin(SinGamma));
}



/***************************************************************************************************/
/* This function move neutron from current position to the surface , furthemore he is include
   GRAVITY effect  and time of flight of neutron (return)
   Author: Manoshin Sergey, manoshin@hmi.de  25.03.01 */
/**************************************************************************************************/
double NeutronSurfaceSecIntersectionGr(Neutron *ThisNeutron, SurfaceSecond ThisSurfaceSecond, long keygrav)
{
	/***********************************************************************************/
	/* This part calculates the time of flight of neutron INCLUDE gravity with   */
	/* plane.	This functions is core for transporting neutrons!									   */
	/***********************************************************************************/

	double  Time, AA, BB, CC, VelocityReal;
	double  VX, VY, VZ, X, Y, Z;
		
	/*	Make the koefficients of quadratic equation    */
	/*	G = 9.8 m/c**2, we need to cm/ms**2 (100/1000/1000)  */
	/*	Velocity cm/ms, Time ms, Position cm	*/

	/*	Calculating real velocity, cm/ms  */
		
	VelocityReal = (double)(V_FROM_LAMBDA(ThisNeutron->Wavelength));
		
	/*	Components of velocity, projections, and position coordinats */
	/*	Local copy */
		
	X = ThisNeutron->Position[0];
	Y = ThisNeutron->Position[1];
	Z = ThisNeutron->Position[2];
		
	VX = VelocityReal*ThisNeutron->Vector[0];
	VY = VelocityReal*ThisNeutron->Vector[1];
	VZ = VelocityReal*ThisNeutron->Vector[2];
		
	/*	Find the coefficients of the quadratic equation */	
		
	if (keygrav == 1)
	{
	
/* Corrected: Marz 03 */	

		AA = -0.5*(G*1.0e-4)*ThisSurfaceSecond.F;
	}
	else
	{
		AA = ThisSurfaceSecond.A*VX*VX +
		ThisSurfaceSecond.C*VY*VY +
		ThisSurfaceSecond.E*VZ*VZ +
		ThisSurfaceSecond.P*VX*VY +
		ThisSurfaceSecond.Q*VY*VZ +
		ThisSurfaceSecond.R*VX*VZ;
	}

  BB = 2.0*(ThisSurfaceSecond.A*VX*X + ThisSurfaceSecond.C*VY*Y + ThisSurfaceSecond.E*VZ*Z) +
    ThisSurfaceSecond.B*VX + ThisSurfaceSecond.D*VY + ThisSurfaceSecond.F*VZ +
    ThisSurfaceSecond.P*(X*VY+Y*VX) +
    ThisSurfaceSecond.Q*(Y*VZ+Z*VY) +
    ThisSurfaceSecond.R*(X*VZ+Z*VX);
	

	CC = ThisSurfaceSecond.A*X*X + ThisSurfaceSecond.B*X+
	  ThisSurfaceSecond.C*Y*Y + ThisSurfaceSecond.D*Y+
	  ThisSurfaceSecond.E*Z*Z + ThisSurfaceSecond.F*Z + ThisSurfaceSecond.W +
	  ThisSurfaceSecond.P*X*Y + ThisSurfaceSecond.Q*Y*Z + ThisSurfaceSecond.R*X*Z;



	/***********************************************************************************/
	/* Now we must to decide quadratic equation for find */
	/* Time AA*Time*Time + BB*Time + CC = 0 */
	/***********************************************************************************/

	Time = SolveQuadraticEq(AA,BB,CC);
		
	/***********************************************************************************/
	/* This part make move neutron in the time include gravity effect  */
	/***********************************************************************************/

	ThisNeutron->Position[0] = ThisNeutron->Position[0] + VelocityReal*Time*(ThisNeutron->Vector[0]);
	ThisNeutron->Position[1] = ThisNeutron->Position[1] + VelocityReal*Time*(ThisNeutron->Vector[1]);
	ThisNeutron->Position[2] = ThisNeutron->Position[2] + VelocityReal*Time*(ThisNeutron->Vector[2]);

	/* Include gravity */
	if (keygrav == 1)
	{	
		ThisNeutron->Position[2] = ThisNeutron->Position[2] - 0.5*(G*1.0e-4)*Time*Time;
		ThisNeutron->Vector[2] = ThisNeutron->Vector[2] - ((G*1.0e-4)*Time/VelocityReal);	
	}
	/* return Time; ms */

	return Time;
}

/* ordering points on a trajectory so that Dir shows from Pos1 to Pos2 */

int OrderPositions(VectorType Dir, VectorType Pos1, VectorType Pos2) 
{
VectorType propag, V;

CopyVector(Pos2, propag); SubVector(propag, Pos1);

	if(ScalarProduct(propag, Dir) == 0.) return 0;
	if(ScalarProduct(propag, Dir) < 0.)
	{
		CopyVector(Pos1, V) ;
		CopyVector(Pos2, Pos1) ;
		CopyVector(V, Pos2) ;
	}
	return 1;
}

/******************************************************************************/
/* 'IntersectionWithRectangular'                                              */
/* 'LineIntersectsCube'                                                       */
/* 'LineIntersectsCylinder'                                                   */
/* 'LineIntersectsSphere'                                                     */
/* These function test whether a line defined by the vectors 'Offset'         */
/* and 'Direction' intersect a solid of certain geometry                      */
/* If the line intersects, the functions returns TRUE                         */
/* For 'LineIntersectsCube', 'LineIntersectsCylinder', 'LineIntersectsSphere' */
/* the parameters t[0] and t[1] are calculated                                */
/* (t[i] are proprotional to the time-of-flight until the intersection)       */
/******************************************************************************/

/******************************************************************************/
/* 'IntersectionWithRectangular'      intersection function for a rectangular */
/* (Author: G. Zsigmond)                                                                     */
long IntersectionWithRectangular(VectorType DimSample, VectorType Pos, VectorType Dir, VectorType Pos1, VectorType Pos2)
{
	VectorType	n, pos0, pos1, pos2, pos3, pos4, pos5 ;
	int			k ;

	for(k=0;k<3;k++) Pos1[k] = Pos2[k] = 0. ;

	n[0] = 1. ; n[1] = n[2] = 0. ;

	if(PlaneLineIntersect2(Pos, Dir, n, - DimSample[0]/2, pos0) == 1)
	{
		if( /*(fabs(pos0[0]) <= DimSample[0]/2.) && */(fabs(pos0[1]) <= DimSample[1]/2.) && (fabs(pos0[2]) <= DimSample[2]/2.) ) CopyVector(pos0, Pos1) ;
	}
	if(PlaneLineIntersect2(Pos, Dir, n, + DimSample[0]/2, pos1) == 1)
	{
		if( /*(fabs(pos1[0]) <= DimSample[0]/2) && */(fabs(pos1[1]) <= DimSample[1]/2) && (fabs(pos1[2]) <= DimSample[2]/2) )
		{
			if(LengthVector(Pos1) == 0.) CopyVector(pos1, Pos1) ;
			else CopyVector(pos1, Pos2) ;
		}
	}

	n[1] = 1. ; n[2] = n[0] = 0. ;

	if(PlaneLineIntersect2(Pos, Dir, n, - DimSample[1]/2, pos2) == 1)
	{
		if( (fabs(pos2[0]) <= DimSample[0]/2) && /*(fabs(pos2[1]) <= DimSample[1]/2) &&*/ (fabs(pos2[2]) <= DimSample[2]/2) )
		{
			if(LengthVector(Pos1) == 0.) CopyVector(pos2, Pos1) ;
			else CopyVector(pos2, Pos2) ;
		}
	}
	if(PlaneLineIntersect2(Pos, Dir, n, + DimSample[1]/2, pos3) == 1)
	{
		if( (fabs(pos3[0]) <= DimSample[0]/2) && /*(fabs(pos3[1]) <= DimSample[1]/2) &&*/ (fabs(pos3[2]) <= DimSample[2]/2) )
		{
			if(LengthVector(Pos1) == 0.) CopyVector(pos3, Pos1) ;
			else CopyVector(pos3, Pos2) ;
		}
	}

	n[2] = 1. ; n[0] = n[1] = 0. ;

	if(PlaneLineIntersect2(Pos, Dir, n, - DimSample[2]/2, pos4) == 1)
	{
		if( (fabs(pos4[0]) <= DimSample[0]/2) && (fabs(pos4[1]) <= DimSample[1]/2) /*&& (fabs(pos4[2]) <= DimSample[2]/2)*/ )
		{
			if(LengthVector(Pos1) == 0.) CopyVector(pos4, Pos1) ;
			else CopyVector(pos4, Pos2) ;
		}
	}
	if(PlaneLineIntersect2(Pos, Dir, n, + DimSample[2]/2, pos5) == 1)
	{
		if( (fabs(pos5[0]) <= DimSample[0]/2) && (fabs(pos5[1]) <= DimSample[1]/2) /*&& (fabs(pos5[2]) <= DimSample[2]/2)*/ )
		{
			if(LengthVector(Pos1) == 0.) CopyVector(pos5, Pos1) ;
			else CopyVector(pos5, Pos2) ;
		}
	}
	/*pi(0);pv(pos0);pv(pos1);pv(pos2);pv(pos3);pv(pos4);pv(pos5);*/

	if((LengthVector(Pos1) == 0.) || (LengthVector(Pos2) == 0.)) return 0 ;

	/*ordering intersection positions */
	
	if(OrderPositions(Dir, Pos1, Pos2)==1);

	return 1 ;

}/* End IntersectionWithRectangular() */



/*************************************************************************/
/* 'LineIntersectsCube'    intersection function for a cube              */
/* The function assumes that the corners of the cube are parallel        */
/* to the x-,y- and z-axis and the center of the cube resides at (0,0,0) */
/* (Author: F. Streffer)                                                                 */
long LineIntersectsCube(VectorType Offset, VectorType Direction, CubeType *Cube, double t[2])
{
	long i,j,k;
	double     PDist[6];
	VectorType ISP[2],
				  TestV; 

	PDist[0] = 0.5*Cube->thickness;
	PDist[1] = 0.5*Cube->thickness;
	PDist[2] = 0.5*Cube->width;    
	PDist[3] = 0.5*Cube->width;
	PDist[4] = 0.5*Cube->height,    
	PDist[5] = 0.5*Cube->height;

	TestV[0] = 0.500000000001*Cube->thickness;   /* not equal 0.5*... to prevent rounding errors */
	TestV[1] = 0.500000000001*Cube->width;
	TestV[2] = 0.500000000001*Cube->height;

	k=0;
	i=MAXV(Direction);

	for(j=0;k<2 && j<6; j++) 
	{
		PlaneLineIntersect(Offset, Direction, PVector[j], PDist[j], ISP[k]);
		if((fabs(ISP[k][0])<TestV[0]) &&
		   (fabs(ISP[k][1])<TestV[1]) &&
		   (fabs(ISP[k][2])<TestV[2])) 
		{
			t[k]=(ISP[k][i]-Offset[i])/Direction[i];
			k++;
		}
	}
	/* Ordering: t1 > t0 */
	if(k>1) 
	{	if (t[0] > t[1])
			Exchange(&t[0], &t[1]);
		return TRUE;
	}
	else
	{	return FALSE;
	}
}



/*************************************************************************/
/* 'LineIntersectsCylinders'    intersection function for a cylinder     */
/* the cylinder axis points a long the x-axis                            */
/* (Author: F. Streffer)                                                                 */
long LineIntersectsCylinder(VectorType Offset, VectorType Direction,
                              CylinderType *Cyl, double t[2])
{
	VectorType ISP[2];
	double p=0.0,q,
	       sp, spq, spr,
	       h;           /* half of the cylinder height*/
	long   result, i, iDir;

	/* determine the intersection of the line with an infinite cylinder */
	h   = Cyl->height/2.0;
	spq = Direction[1]*Direction[1] + Direction[2]*Direction[2];
	if(spq > 0.0) 
	{
		p = (Offset[1]*Direction[1] + Offset[2]*Direction[2]) / spq;
		q = (Offset[1]*Offset[1] + Offset[2]*Offset[2] - Cyl->r*Cyl->r) / spq;
		sp = p*p-q;
	} 
	else 
	{
		sp = 0.0;
	}

	if(sp > 0.0) 
	{
		/*Ok, the neutron intersects the infinite cylinder */
		spr=sqrt(sp);
		t[0]=-p-spr;
		t[1]=-p+spr;

		/* Give the t's an order so its easier later on */
		if(t[0] > t[1]) 
		  Exchange(&t[0], &t[1]);

		/* checks, where the line enters and leaves the cylinder */
		/* X[i] = ISP[i][0] (see intersection.h) */
		X(0) = Offset[0]+t[0]*Direction[0]; 
		X(1) = Offset[0]+t[1]*Direction[0];
		if (Direction[0] > 0.0) iDir = 1;
		else                    iDir = 0;
		i=MAXV(Direction);

		/* A) line enters and leaves through the cylinder wall */
		if     (fabs(X(0)) < h  &&  fabs(X(1)) < h) 
		{
			result=TRUE;
		}
		/* B) line enters through the cylinder wall and leaves through one of the cylinder disks */
		else if(fabs(X(0)) < h  &&  fabs(X(1)) >= h) 
		{
			PlaneLineIntersect(Offset, Direction, PVector[1-iDir], h, ISP[1]);
			t[1] = (ISP[1][i]-Offset[i])/Direction[i];
			result=TRUE;
		} 
		/* C) lines enters through a cylinder disk and leaves through the cylinder wall */
		else if(fabs(X(0)) >= h  &&  fabs(X(1)) < h) 
		{
			PlaneLineIntersect(Offset, Direction, PVector[iDir], h, ISP[0]);
			t[0] = (ISP[0][i]-Offset[i])/Direction[i];
			result=TRUE;
		} 
		/* D) line enters through one of the cylinder disks and leaves through the other one */
		else if( (X(0) < -h  &&  X(1) > h) || (X(0) > h  &&  X(1) < -h) ) 
		{
			PlaneLineIntersect(Offset, Direction, PVector[1-iDir], h, ISP[1]);
			PlaneLineIntersect(Offset, Direction, PVector[iDir],   h, ISP[0]);
			t[0] = (ISP[0][i]-Offset[i])/Direction[i];
			t[1] = (ISP[1][i]-Offset[i])/Direction[i];
			result=TRUE;
		}
		else 
		{
			result=FALSE;
		}
	} 
	else 
	{	/* Hmm, just missed, but wait one chance remains */
		result=FALSE;
		if(spq==0.0 && (Offset[1]*Offset[1] + Offset[2]*Offset[2] < Cyl->r*Cyl->r))
		{
			/* ok, really not very propable but ... */
			/* the neutron travels paralles to x-axis inside the cylinder   */
			t[0] = ( h-Offset[0])/Direction[0];
			t[1] = (-h-Offset[0])/Direction[0];
			result=TRUE;
		}
	}

	/* Ordering: t1 > t0 */
	if (result==TRUE  &&  t[0] > t[1])
		Exchange(&t[0], &t[1]);

	return result;
}

/************************************************************************/
/* IntersectionWithInfiniteCylinder: gives coordinates of intersections  */
/* (Author: G. Zsigmond)                                                                */
long	IntersectionWithInfiniteCylinder(double DiameterCyl, VectorType Pos, VectorType Dir, VectorType Pos1, VectorType Pos2)
{
double b, c, delta;

		b = (Pos[0] * Dir[0] + Pos[1] * Dir[1]) / (sq(Dir[0]) + sq(Dir[1])) ;
		c = (sq(Pos[0]) + sq(Pos[1]) - sq(DiameterCyl/2)) / (sq(Dir[0]) + sq(Dir[1])) ;

		if((delta = sq(b) - c) < 0.) return 0 ;

		CopyVector(Dir, Pos1) ;
		MultiplyByScalar(Pos1, - b + (double) sqrt(delta)) ;
		AddVector(Pos1, Pos) ;

		CopyVector(Dir, Pos2) ;
		MultiplyByScalar(Pos2, - b - (double) sqrt(delta)) ;
		AddVector(Pos2, Pos) ;

		return 1 ;
}

/*****************************************************************/
/* Intersection with cylinder: gives coordinates of intersections */
/* (Author: G. Zsigmond)                                                           */
long IntersectionWithCylinder(VectorType DimSample, VectorType Pos, VectorType Dir, VectorType Pos1, VectorType Pos2)
{
	if(IntersectionWithInfiniteCylinder(DimSample[0], Pos, Dir, Pos1, Pos2) == 0) return 0 ;

	/* ordering intersection positions */
	
		if(OrderPositions(Dir, Pos1, Pos2)==1);	

	    if((Pos1[2] > DimSample[2]/2.) && (Pos2[2] > DimSample[2]/2.)) return 0 ;
        if((Pos1[2] < - DimSample[2]/2.) && (Pos2[2] < - DimSample[2]/2.)) return 0 ;
        if((fabs(Pos1[2]) <= DimSample[2]/2.) && (fabs(Pos2[2]) <= DimSample[2]/2.)) return 1 ;/* both through cylinder walls */
		
		if( (Pos2[2] <= DimSample[2]/2.) && (Pos2[2] >= - DimSample[2]/2.) ) /* exit cylinder wall */
		{
			if(Pos1[2] >= DimSample[2]/2.)   /* entrance top */
			{
				if(IntersectionWithHorizontalPlane(DimSample[2]/2., Pos2, Dir, Pos1) == 0) return 0 ;
				return 1 ;
			}
			if(Pos1[2] <= - DimSample[2]/2.) /* entrance bottom */
			{
				if(IntersectionWithHorizontalPlane(- DimSample[2]/2., Pos2, Dir, Pos1) == 0) return 0 ;
				return 1;
			}
		else return 0 ;
		}

        if((Pos1[2] >= DimSample[2]/2.) && (Pos2[2] <= - DimSample[2]/2.)) /* entrance top exit bottom */
		{
			if(IntersectionWithHorizontalPlane(DimSample[2]/2., Pos, Dir, Pos1) == 0) return 0 ;
			if(IntersectionWithHorizontalPlane(- DimSample[2]/2., Pos, Dir, Pos2) == 0) return 0 ;
	        return 1;
        }

        if((Pos1[2] <= - DimSample[2]/2.) && (Pos2[2] >= DimSample[2]/2.)) /* entrance bottom exit top */
		{
			if(IntersectionWithHorizontalPlane(- DimSample[2]/2., Pos, Dir, Pos1) == 0) return 0 ;
			if(IntersectionWithHorizontalPlane(DimSample[2]/2., Pos, Dir, Pos2) == 0) return 0 ;
			return 1;
        }

		if( (Pos1[2] >= - DimSample[2]/2.) && (Pos1[2] <= DimSample[2]/2.) ) /* entrance cylinder wall */
		{
			if(Pos2[2] >= DimSample[2]/2.) /* exit top */
			{
				if(IntersectionWithHorizontalPlane(DimSample[2]/2., Pos1, Dir, Pos2) == 0) return 0 ;
				return 1;
			}
			if(Pos2[2] <= - DimSample[2]/2.) /* exit bottom */
			{
				if(IntersectionWithHorizontalPlane(- DimSample[2]/2., Pos1, Dir, Pos2) == 0) return 0 ;
				return 1;
			}
		else return 0 ;
        }
		else return 0 ;
}


/*****************************************************************************/
/* 'LineIntersectsSphere'    intersection function for a sphere              */
/* (Author: F. Streffer)                                                                 */
long LineIntersectsSphere(VectorType Offset, VectorType Direction,
                            BallType *Sphere, double t[2])
/* similar to Line_Intersects_Cube but for a sphere */
{
	/* lets solve x+y+z-r=0 with x=x_0+t*x_t */
	/* x_t+y_t+z_t=1 since Nin->Vector is normalized */
	/* p equals p/2 of the formual solving quadratic eqs. */
	double p,spq;

	p = ScalarProduct(Direction,Offset);
	spq= p*p-(ScalarProduct(Offset,Offset)-Sphere->r*Sphere->r);
	if(spq > 0.0) 
	{
		spq=sqrt(spq);
		t[0]=-p-spq;
		t[1]=-p+spq;

		/* Ordering: t1 > t0 */
		if (t[0] > t[1])
			Exchange(&t[0], &t[1]);
		return TRUE;
	} 
	else
	{	/* Also if spq is 0.0, i.e. the entrance and exit is the same point */
		/* the neutron is considered to have missed the sample */
		return FALSE;
	}
}


/*****************************************************************************/
/* 'IntersectionWithSphere'  gives coordinates of intersections with a sphere */
/* (Author: G. Zsigmond)                                                                     */
long IntersectionWithSphere(VectorType DimSample, VectorType Pos, VectorType Dir, VectorType Pos1, VectorType Pos2)
{
double b, c, delta, khi1, khi2 ;

	b = ScalarProduct(Pos, Dir) ;
	c = ScalarProduct(Pos, Pos) - sq(DimSample[0]/2) ;
	delta = sq(b) - c ;

	khi1 = - b + (double) sqrt(delta) ;
	khi2 = - b - (double) sqrt(delta) ;

	if(delta < 0.) return 0 ;
	else
	{
		CopyVector(Dir, Pos1) ;
		MultiplyByScalar(Pos1, khi1) ;
		AddVector(Pos1, Pos) ;

		CopyVector(Dir, Pos2) ;
		MultiplyByScalar(Pos2, khi2) ;
		AddVector(Pos2, Pos) ;

		/*ordering intersection positions */
	
		if(OrderPositions(Dir, Pos1, Pos2)==1);	

		return 1 ;
	}
}


/****************************************************************/
/* 'PlaneLineIntersect'                                         */
/* 'PlaneLineIntersect2'                                        */
/* These functions compute the intersect of a line give by some */
/* offset and a Direction, and a plane in the Hessian form.     */
/****************************************************************/
/****************************************************************/
/*  PlaneLineIntersect                                          */
/* function returns TRUE if the line intersects and             */
/*                       'Result' will contain the point        */
/*                  FALSE if the line is parallel to plane      */
/* (Author: F. Streffer)                                                                 */
int PlaneLineIntersect(VectorType LineOffset, VectorType LineDir,
                       VectorType PlaneNormalVector, double PlaneDistane,
                       VectorType Result)
{
	double     help,t;
	int        i;
	double help1;

	help=ScalarProduct(LineDir,PlaneNormalVector);
	if(help==0.0) 
	{
		/* Ok, there is somehow a problem, the line given is parallel to   */
		/* the plane and will never intersect.                             */
		return FALSE;
	} 
	else 
	{
		help1= ScalarProduct(LineOffset,PlaneNormalVector);
		t=(PlaneDistane-help1)/help;
		for(i=0;i<3;i++)
			Result[i]=LineOffset[i]+t*LineDir[i];
	}
	return TRUE;
}

/***************************************/
/* IntersectionWithHorizontalPlane		*/
/* Z:		position of the plane		*/
/* PosVect: point on line				*/
/* Dir:		flight direction			*/
/* (Author: G. Zsigmond)                                                           */

long IntersectionWithHorizontalPlane(double Z , VectorType PosVect , VectorType Dir, VectorType Result)
{
	if(Dir[2] ==0.) return 0 ;

	CopyVector(Dir, Result) ;
	MultiplyByScalar(Result, (Z - PosVect[2])/Dir[2]) ;
	AddVector(Result, PosVect) ;

	return 1;
}


/*********************************************************************/
/*  PlaneLineIntersect2                                              */
/*                                                                   */
/* function returns TRUE, 'Result' contains the point                */
/* if line is parallel to plane, 'Result' contains very high values  */
/* (Author: G. Zsigmond)                                                           */
int PlaneLineIntersect2(VectorType LineOffset, VectorType LineDir,
                       VectorType PlaneNormalVector, double PlaneDistane,
                       VectorType Result)
{
	double     help,t;
	int        i;
	double help1;

	help=ScalarProduct(LineDir,PlaneNormalVector);
	if(help==0.0)
	{
		/* Ok, there is somehow a problem, the line given is parallel to   */
		/* the plane and will never intersect.                             */
		for(i=0;i<3;i++) Result[i]=1.e20; return 1;
	} 
	else 
	{
		help1= ScalarProduct(LineOffset,PlaneNormalVector);
		t=(PlaneDistane-help1)/help;
		for(i=0;i<3;i++)
			Result[i]=LineOffset[i]+t*LineDir[i];
	}
	return TRUE;
}


/***********************************************************************************/
/** local functions                                                               **/
/***********************************************************************************/

/*******************************************************************/
/* THIS FUNCTION SOLVES THE QUADRATIC EQUATION
   AA*X*X+BB*X+CC=0
   Version from 29.01.01, Author Manoshin Sergey  manoshin@hmi.de  */
/*******************************************************************/
double SolveQuadraticEq(double AA, double BB, double CC)
{	
	double X1=0.0, X2=0.0;
	double DD, TEMP;
	double Time=0.0;

	/*	ignore a - very small or eq zero , to solve bx+c=0 */
		
	if ((fabs(AA)*1.0e12) <= fabs(BB)||(AA == 0.0))
	{
		if (BB != 0.0)
		{
			/*	AA=0 BB # 0	  */
			X1 = -CC/BB;
			X2 = X1;
			goto ok15;
		}
		else
		{
			if (CC == 0.0)
			{
				/*	AA=0 BB=0 CC=0	    */
				X1 = 0.0;
				X2 = 0.0;
				goto ok15;
			}
			/*	AA=0 BB=0 CC # 0	  */
			X1 = -1.0e4;
			X2 = X1;
			goto ok15;
		}
	}

	/*  later AA not eq zero */

	/*	square eq. Axx+Bx=0 AA # 0 C=0	*/
	if (CC == 0)
	{
		X1 = -BB/AA;
		X2 = 0.0;
		goto ok15;
	}

	/*	Axx+C=0	  */
	if (BB == 0.0)
	{
		TEMP = -CC/AA;
		if (TEMP < 0.0)
		{
			/*	SQRT(TEMP)   */
			X1 = -1.0e4;
			X2 = -1.0e4;
			goto ok15;
		}
		X1 = sqrt(TEMP);
		X2 = -X1;
		goto ok15;
	}


	/*	eq Axx+Bx+C=0	*/
	DD = BB*BB - 4.0*AA*CC;
	if (DD < 0.0)
	{
		/*	D<0   */
		X1 = -1.0e4;
		X2 = -1.0e4;
		goto ok15;
	}
		
	DD = sqrt(DD);
	if (DD == 0.0)
	{
		X1=-BB/(2.0*AA);
		X2=X1;
		goto ok15;
	}
		
		
	if (BB > 0.0)
	{
		X1 = (-BB-DD)/(2.0*AA);
		X2 = (2.0*CC)/(-BB-DD);
		goto ok15;
	}
		
	if (BB < 0.0)
	{
		X2 = (-BB+DD)/(2.0*AA);
		X1 = (2.0*CC)/(-BB+DD);
		goto ok15;
	}
		
	ok15:
	/*	printf("squares= %e  %e \n",X1,X2);	*/
	/* Now find smallest root and copy this in Time  */

	if (fabs(X1) < 4e-10) 
		X1=0.0;
	if (fabs(X2) < 4e-10) 
		X2=0.0;

	if ((X1 > 0.0) && (X2 > 0.0))
	{
		Time = Min(X1, X2);
	}	
	else
	{
		Time = Max(X1, X2);
	}
		
	return Time;
}	
 	


syntax highlighted by Code2HTML, v. 0.9.1