/* * gm_bsddl.h -- gpart BSD disk label guessing module header * * gpart (c) 1999-2001 Michail Brzitwa * Guess PC-type hard disk partitions. * * gpart is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2, or (at your * option) any later version. * * Created: 04.01.1999 * Modified: * */ #ifndef _GM_BSDDL_H #define _GM_BSDDL_H /* * BSD 4.4 disklabel support. Copied from the sources of the * FreeBSD (2.2.7) disklabel(8) program sources. These sources * are under the BSD licence, not the GPL. Please see http:// * www.freebsd.org/ for copyright/licence notes. */ #define STANDALONE #define BBSIZE 8192 /* size of boot area, with label */ #ifdef __i386__ #define LABELSECTOR 1 /* sector containing label */ #define LABELOFFSET 0 /* offset of label in sector */ #endif #ifndef LABELSECTOR #define LABELSECTOR 0 /* sector containing label */ #endif #ifndef LABELOFFSET #define LABELOFFSET 64 /* offset of label in sector */ #endif #define DISKMAGIC ((u_int32_t)0x82564557) /* The disk magic number */ #ifndef MAXPARTITIONS #define MAXPARTITIONS 8 #endif #define LABEL_PART 2 /* partition containing label */ #define RAW_PART 2 /* partition containing whole disk */ #define SWAP_PART 1 /* partition normally containing swap */ struct disklabel { u_int32_t d_magic; /* the magic number */ u_int16_t d_type; /* drive type */ u_int16_t d_subtype; /* controller/d_type specific */ char d_typename[16]; /* type name, e.g. "eagle" */ /* * d_packname contains the pack identifier and is returned when * the disklabel is read off the disk or in-core copy. * d_boot0 and d_boot1 are the (optional) names of the * primary (block 0) and secondary (block 1-15) bootstraps * as found in /usr/mdec. These are returned when using * getdiskbyname(3) to retrieve the values from /etc/disktab. */ #if defined(KERNEL) || defined(STANDALONE) char d_packname[16]; /* pack identifier */ #else union { char un_d_packname[16]; /* pack identifier */ struct { char *un_d_boot0; /* primary bootstrap name */ char *un_d_boot1; /* secondary bootstrap name */ } un_b; } d_un; #define d_packname d_un.un_d_packname #define d_boot0 d_un.un_b.un_d_boot0 #define d_boot1 d_un.un_b.un_d_boot1 #endif /* ! KERNEL or STANDALONE */ /* disk geometry: */ u_int32_t d_secsize; /* # of bytes per sector */ u_int32_t d_nsectors; /* # of data sectors per track */ u_int32_t d_ntracks; /* # of tracks per cylinder */ u_int32_t d_ncylinders; /* # of data cylinders per unit */ u_int32_t d_secpercyl; /* # of data sectors per cylinder */ u_int32_t d_secperunit; /* # of data sectors per unit */ /* * Spares (bad sector replacements) below are not counted in * d_nsectors or d_secpercyl. Spare sectors are assumed to * be physical sectors which occupy space at the end of each * track and/or cylinder. */ u_int16_t d_sparespertrack; /* # of spare sectors per track */ u_int16_t d_sparespercyl; /* # of spare sectors per cylinder */ /* * Alternate cylinders include maintenance, replacement, configuration * description areas, etc. */ u_int32_t d_acylinders; /* # of alt. cylinders per unit */ /* hardware characteristics: */ /* * d_interleave, d_trackskew and d_cylskew describe perturbations * in the media format used to compensate for a slow controller. * Interleave is physical sector interleave, set up by the * formatter or controller when formatting. When interleaving is * in use, logically adjacent sectors are not physically * contiguous, but instead are separated by some number of * sectors. It is specified as the ratio of physical sectors * traversed per logical sector. Thus an interleave of 1:1 * implies contiguous layout, while 2:1 implies that logical * sector 0 is separated by one sector from logical sector 1. * d_trackskew is the offset of sector 0 on track N relative to * sector 0 on track N-1 on the same cylinder. Finally, d_cylskew * is the offset of sector 0 on cylinder N relative to sector 0 * on cylinder N-1. */ u_int16_t d_rpm; /* rotational speed */ u_int16_t d_interleave; /* hardware sector interleave */ u_int16_t d_trackskew; /* sector 0 skew, per track */ u_int16_t d_cylskew; /* sector 0 skew, per cylinder */ u_int32_t d_headswitch; /* head switch time, usec */ u_int32_t d_trkseek; /* track-to-track seek, usec */ u_int32_t d_flags; /* generic flags */ #define NDDATA 5 u_int32_t d_drivedata[NDDATA]; /* drive-type specific information */ #define NSPARE 5 u_int32_t d_spare[NSPARE]; /* reserved for future use */ u_int32_t d_magic2; /* the magic number (again) */ u_int16_t d_checksum; /* xor of data incl. partitions */ /* filesystem and partition information: */ u_int16_t d_npartitions; /* number of partitions in following */ u_int32_t d_bbsize; /* size of boot area at sn0, bytes */ u_int32_t d_sbsize; /* max size of fs superblock, bytes */ struct partition { /* the partition table */ u_int32_t p_size; /* number of sectors in partition */ u_int32_t p_offset; /* starting sector */ u_int32_t p_fsize; /* filesystem basic fragment size */ u_int8_t p_fstype; /* filesystem type, see below */ u_int8_t p_frag; /* filesystem fragments per block */ union { u_int16_t cpg; /* UFS: FS cylinders per group */ u_int16_t sgs; /* LFS: FS segment shift */ } __partition_u1; #define p_cpg __partition_u1.cpg #define p_sgs __partition_u1.sgs } d_partitions[MAXPARTITIONS]; /* actually may be more */ }; #endif /* _GM_BSDDL_H */