/*
* The PCI Utilities -- List All PCI Devices
*
* Copyright (c) 1997--2007 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include "pciutils.h"
/* Options */
static int verbose; /* Show detailed information */
static int opt_buscentric; /* Show bus addresses/IRQ's instead of CPU-visible ones */
static int opt_hex; /* Show contents of config space as hexadecimal numbers */
static struct pci_filter filter; /* Device filter */
static int opt_tree; /* Show bus tree */
static int opt_machine; /* Generate machine-readable output */
static int opt_map_mode; /* Bus mapping mode enabled */
static int opt_domains; /* Show domain numbers (0=disabled, 1=auto-detected, 2=requested) */
const char program_name[] = "lspci";
static char options[] = "nvbxs:d:ti:mgMD" GENERIC_OPTIONS ;
static char help_msg[] = "\
Usage: lspci [<switches>]\n\
\n\
-v\t\tBe verbose\n\
-n\t\tShow numeric ID's\n\
-nn\t\tShow both textual and numeric ID's (names & numbers)\n\
-b\t\tBus-centric view (PCI addresses and IRQ's instead of those seen by the CPU)\n\
-x\t\tShow hex-dump of the standard portion of config space\n\
-xxx\t\tShow hex-dump of the whole config space (dangerous; root only)\n\
-xxxx\t\tShow hex-dump of the 4096-byte extended config space (root only)\n\
-s [[[[<domain>]:]<bus>]:][<slot>][.[<func>]]\tShow only devices in selected slots\n\
-d [<vendor>]:[<device>]\tShow only selected devices\n\
-t\t\tShow bus tree\n\
-m\t\tProduce machine-readable output\n\
-i <file>\tUse specified ID database instead of %s\n\
-D\t\tAlways show domain numbers\n\
-M\t\tEnable `bus mapping' mode (dangerous; root only)\n"
GENERIC_HELP
;
/*** Communication with libpci ***/
static struct pci_access *pacc;
/*
* If we aren't being compiled by GCC, use xmalloc() instead of alloca().
* This increases our memory footprint, but only slightly since we don't
* use alloca() much.
*/
#if defined (__FreeBSD__) || defined (__NetBSD__) || defined (__OpenBSD__) || defined (__DragonFly__)
/* alloca() is defined in stdlib.h */
#elif defined(__GNUC__) && !defined(PCI_OS_WINDOWS)
#include <alloca.h>
#else
#undef alloca
#define alloca xmalloc
#endif
/*** Our view of the PCI bus ***/
struct device {
struct device *next;
struct pci_dev *dev;
unsigned int config_cached, config_bufsize;
byte *config; /* Cached configuration space data */
byte *present; /* Maps which configuration bytes are present */
};
static struct device *first_dev;
static int seen_errors;
static int
config_fetch(struct device *d, unsigned int pos, unsigned int len)
{
unsigned int end = pos+len;
int result;
while (pos < d->config_bufsize && len && d->present[pos])
pos++, len--;
while (pos+len <= d->config_bufsize && len && d->present[pos+len-1])
len--;
if (!len)
return 1;
if (end > d->config_bufsize)
{
int orig_size = d->config_bufsize;
while (end > d->config_bufsize)
d->config_bufsize *= 2;
d->config = xrealloc(d->config, d->config_bufsize);
d->present = xrealloc(d->present, d->config_bufsize);
memset(d->present + orig_size, 0, d->config_bufsize - orig_size);
}
result = pci_read_block(d->dev, pos, d->config + pos, len);
if (result)
memset(d->present + pos, 1, len);
return result;
}
static struct device *
scan_device(struct pci_dev *p)
{
struct device *d;
if (p->domain && !opt_domains)
opt_domains = 1;
if (!pci_filter_match(&filter, p))
return NULL;
d = xmalloc(sizeof(struct device));
memset(d, 0, sizeof(*d));
d->dev = p;
d->config_cached = d->config_bufsize = 64;
d->config = xmalloc(64);
d->present = xmalloc(64);
memset(d->present, 1, 64);
if (!pci_read_block(p, 0, d->config, 64))
{
fprintf(stderr, "lspci: Unable to read the standard configuration space header of device %04x:%02x:%02x.%d\n",
p->domain, p->bus, p->dev, p->func);
seen_errors++;
return NULL;
}
if ((d->config[PCI_HEADER_TYPE] & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
{
/* For cardbus bridges, we need to fetch 64 bytes more to get the
* full standard header... */
if (config_fetch(d, 64, 64))
d->config_cached += 64;
}
pci_setup_cache(p, d->config, d->config_cached);
pci_fill_info(p, PCI_FILL_IDENT | PCI_FILL_CLASS | PCI_FILL_IRQ | PCI_FILL_BASES | PCI_FILL_ROM_BASE | PCI_FILL_SIZES);
return d;
}
static void
scan_devices(void)
{
struct device *d;
struct pci_dev *p;
pci_scan_bus(pacc);
for(p=pacc->devices; p; p=p->next)
if (d = scan_device(p))
{
d->next = first_dev;
first_dev = d;
}
}
/*** Config space accesses ***/
static void
check_conf_range(struct device *d, unsigned int pos, unsigned int len)
{
while (len)
if (!d->present[pos])
die("Internal bug: Accessing non-read configuration byte at position %x", pos);
else
pos++, len--;
}
static inline byte
get_conf_byte(struct device *d, unsigned int pos)
{
check_conf_range(d, pos, 1);
return d->config[pos];
}
static word
get_conf_word(struct device *d, unsigned int pos)
{
check_conf_range(d, pos, 2);
return d->config[pos] | (d->config[pos+1] << 8);
}
static u32
get_conf_long(struct device *d, unsigned int pos)
{
check_conf_range(d, pos, 4);
return d->config[pos] |
(d->config[pos+1] << 8) |
(d->config[pos+2] << 16) |
(d->config[pos+3] << 24);
}
/*** Sorting ***/
static int
compare_them(const void *A, const void *B)
{
const struct pci_dev *a = (*(const struct device **)A)->dev;
const struct pci_dev *b = (*(const struct device **)B)->dev;
if (a->domain < b->domain)
return -1;
if (a->domain > b->domain)
return 1;
if (a->bus < b->bus)
return -1;
if (a->bus > b->bus)
return 1;
if (a->dev < b->dev)
return -1;
if (a->dev > b->dev)
return 1;
if (a->func < b->func)
return -1;
if (a->func > b->func)
return 1;
return 0;
}
static void
sort_them(void)
{
struct device **index, **h, **last_dev;
int cnt;
struct device *d;
cnt = 0;
for(d=first_dev; d; d=d->next)
cnt++;
h = index = alloca(sizeof(struct device *) * cnt);
for(d=first_dev; d; d=d->next)
*h++ = d;
qsort(index, cnt, sizeof(struct device *), compare_them);
last_dev = &first_dev;
h = index;
while (cnt--)
{
*last_dev = *h;
last_dev = &(*h)->next;
h++;
}
*last_dev = NULL;
}
/*** Normal output ***/
#define FLAG(x,y) ((x & y) ? '+' : '-')
static void
show_slot_name(struct device *d)
{
struct pci_dev *p = d->dev;
if (!opt_machine ? opt_domains : (p->domain || opt_domains >= 2))
printf("%04x:", p->domain);
printf("%02x:%02x.%d", p->bus, p->dev, p->func);
}
static void
show_terse(struct device *d)
{
int c;
struct pci_dev *p = d->dev;
char classbuf[128], devbuf[128];
show_slot_name(d);
printf(" %s: %s",
pci_lookup_name(pacc, classbuf, sizeof(classbuf),
PCI_LOOKUP_CLASS,
p->device_class),
pci_lookup_name(pacc, devbuf, sizeof(devbuf),
PCI_LOOKUP_VENDOR | PCI_LOOKUP_DEVICE,
p->vendor_id, p->device_id));
if (c = get_conf_byte(d, PCI_REVISION_ID))
printf(" (rev %02x)", c);
if (verbose)
{
char *x;
c = get_conf_byte(d, PCI_CLASS_PROG);
x = pci_lookup_name(pacc, devbuf, sizeof(devbuf),
PCI_LOOKUP_PROGIF | PCI_LOOKUP_NO_NUMBERS,
p->device_class, c);
if (c || x)
{
printf(" (prog-if %02x", c);
if (x)
printf(" [%s]", x);
putchar(')');
}
}
putchar('\n');
}
/*** Capabilities ***/
static void
cap_pm(struct device *d, int where, int cap)
{
int t, b;
static int pm_aux_current[8] = { 0, 55, 100, 160, 220, 270, 320, 375 };
printf("Power Management version %d\n", cap & PCI_PM_CAP_VER_MASK);
if (verbose < 2)
return;
printf("\t\tFlags: PMEClk%c DSI%c D1%c D2%c AuxCurrent=%dmA PME(D0%c,D1%c,D2%c,D3hot%c,D3cold%c)\n",
FLAG(cap, PCI_PM_CAP_PME_CLOCK),
FLAG(cap, PCI_PM_CAP_DSI),
FLAG(cap, PCI_PM_CAP_D1),
FLAG(cap, PCI_PM_CAP_D2),
pm_aux_current[(cap >> 6) & 7],
FLAG(cap, PCI_PM_CAP_PME_D0),
FLAG(cap, PCI_PM_CAP_PME_D1),
FLAG(cap, PCI_PM_CAP_PME_D2),
FLAG(cap, PCI_PM_CAP_PME_D3_HOT),
FLAG(cap, PCI_PM_CAP_PME_D3_COLD));
if (!config_fetch(d, where + PCI_PM_CTRL, PCI_PM_SIZEOF - PCI_PM_CTRL))
return;
t = get_conf_word(d, where + PCI_PM_CTRL);
printf("\t\tStatus: D%d PME-Enable%c DSel=%d DScale=%d PME%c\n",
t & PCI_PM_CTRL_STATE_MASK,
FLAG(t, PCI_PM_CTRL_PME_ENABLE),
(t & PCI_PM_CTRL_DATA_SEL_MASK) >> 9,
(t & PCI_PM_CTRL_DATA_SCALE_MASK) >> 13,
FLAG(t, PCI_PM_CTRL_PME_STATUS));
b = get_conf_byte(d, where + PCI_PM_PPB_EXTENSIONS);
if (b)
printf("\t\tBridge: PM%c B3%c\n",
FLAG(t, PCI_PM_BPCC_ENABLE),
FLAG(~t, PCI_PM_PPB_B2_B3));
}
static void
format_agp_rate(int rate, char *buf, int agp3)
{
char *c = buf;
int i;
for(i=0; i<=2; i++)
if (rate & (1 << i))
{
if (c != buf)
*c++ = ',';
c += sprintf(c, "x%d", 1 << (i + 2*agp3));
}
if (c != buf)
*c = 0;
else
strcpy(buf, "<none>");
}
static void
cap_agp(struct device *d, int where, int cap)
{
u32 t;
char rate[16];
int ver, rev;
int agp3 = 0;
ver = (cap >> 4) & 0x0f;
rev = cap & 0x0f;
printf("AGP version %x.%x\n", ver, rev);
if (verbose < 2)
return;
if (!config_fetch(d, where + PCI_AGP_STATUS, PCI_AGP_SIZEOF - PCI_AGP_STATUS))
return;
t = get_conf_long(d, where + PCI_AGP_STATUS);
if (ver >= 3 && (t & PCI_AGP_STATUS_AGP3))
agp3 = 1;
format_agp_rate(t & 7, rate, agp3);
printf("\t\tStatus: RQ=%d Iso%c ArqSz=%d Cal=%d SBA%c ITACoh%c GART64%c HTrans%c 64bit%c FW%c AGP3%c Rate=%s\n",
((t & PCI_AGP_STATUS_RQ_MASK) >> 24U) + 1,
FLAG(t, PCI_AGP_STATUS_ISOCH),
((t & PCI_AGP_STATUS_ARQSZ_MASK) >> 13),
((t & PCI_AGP_STATUS_CAL_MASK) >> 10),
FLAG(t, PCI_AGP_STATUS_SBA),
FLAG(t, PCI_AGP_STATUS_ITA_COH),
FLAG(t, PCI_AGP_STATUS_GART64),
FLAG(t, PCI_AGP_STATUS_HTRANS),
FLAG(t, PCI_AGP_STATUS_64BIT),
FLAG(t, PCI_AGP_STATUS_FW),
FLAG(t, PCI_AGP_STATUS_AGP3),
rate);
t = get_conf_long(d, where + PCI_AGP_COMMAND);
format_agp_rate(t & 7, rate, agp3);
printf("\t\tCommand: RQ=%d ArqSz=%d Cal=%d SBA%c AGP%c GART64%c 64bit%c FW%c Rate=%s\n",
((t & PCI_AGP_COMMAND_RQ_MASK) >> 24U) + 1,
((t & PCI_AGP_COMMAND_ARQSZ_MASK) >> 13),
((t & PCI_AGP_COMMAND_CAL_MASK) >> 10),
FLAG(t, PCI_AGP_COMMAND_SBA),
FLAG(t, PCI_AGP_COMMAND_AGP),
FLAG(t, PCI_AGP_COMMAND_GART64),
FLAG(t, PCI_AGP_COMMAND_64BIT),
FLAG(t, PCI_AGP_COMMAND_FW),
rate);
}
static void
cap_pcix_nobridge(struct device *d, int where)
{
u16 command;
u32 status;
static const byte max_outstanding[8] = { 1, 2, 3, 4, 8, 12, 16, 32 };
printf("PCI-X non-bridge device\n");
if (verbose < 2)
return;
if (!config_fetch(d, where + PCI_PCIX_STATUS, 4))
return;
command = get_conf_word(d, where + PCI_PCIX_COMMAND);
status = get_conf_long(d, where + PCI_PCIX_STATUS);
printf("\t\tCommand: DPERE%c ERO%c RBC=%d OST=%d\n",
FLAG(command, PCI_PCIX_COMMAND_DPERE),
FLAG(command, PCI_PCIX_COMMAND_ERO),
1 << (9 + ((command & PCI_PCIX_COMMAND_MAX_MEM_READ_BYTE_COUNT) >> 2U)),
max_outstanding[(command & PCI_PCIX_COMMAND_MAX_OUTSTANDING_SPLIT_TRANS) >> 4U]);
printf("\t\tStatus: Dev=%02x:%02x.%d 64bit%c 133MHz%c SCD%c USC%c DC=%s DMMRBC=%u DMOST=%u DMCRS=%u RSCEM%c 266MHz%c 533MHz%c\n",
((status >> 8) & 0xff),
((status >> 3) & 0x1f),
(status & PCI_PCIX_STATUS_FUNCTION),
FLAG(status, PCI_PCIX_STATUS_64BIT),
FLAG(status, PCI_PCIX_STATUS_133MHZ),
FLAG(status, PCI_PCIX_STATUS_SC_DISCARDED),
FLAG(status, PCI_PCIX_STATUS_UNEXPECTED_SC),
((status & PCI_PCIX_STATUS_DEVICE_COMPLEXITY) ? "bridge" : "simple"),
1 << (9 + ((status >> 21) & 3U)),
max_outstanding[(status >> 23) & 7U],
1 << (3 + ((status >> 26) & 7U)),
FLAG(status, PCI_PCIX_STATUS_RCVD_SC_ERR_MESS),
FLAG(status, PCI_PCIX_STATUS_266MHZ),
FLAG(status, PCI_PCIX_STATUS_533MHZ));
}
static void
cap_pcix_bridge(struct device *d, int where)
{
static const char * const sec_clock_freq[8] = { "conv", "66MHz", "100MHz", "133MHz", "?4", "?5", "?6", "?7" };
u16 secstatus;
u32 status, upstcr, downstcr;
printf("PCI-X bridge device\n");
if (verbose < 2)
return;
if (!config_fetch(d, where + PCI_PCIX_BRIDGE_STATUS, 12))
return;
secstatus = get_conf_word(d, where + PCI_PCIX_BRIDGE_SEC_STATUS);
printf("\t\tSecondary Status: 64bit%c 133MHz%c SCD%c USC%c SCO%c SRD%c Freq=%s\n",
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_64BIT),
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_133MHZ),
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SC_DISCARDED),
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_UNEXPECTED_SC),
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SC_OVERRUN),
FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SPLIT_REQUEST_DELAYED),
sec_clock_freq[(secstatus >> 6) & 7]);
status = get_conf_long(d, where + PCI_PCIX_BRIDGE_STATUS);
printf("\t\tStatus: Dev=%02x:%02x.%d 64bit%c 133MHz%c SCD%c USC%c SCO%c SRD%c\n",
((status >> 8) & 0xff),
((status >> 3) & 0x1f),
(status & PCI_PCIX_BRIDGE_STATUS_FUNCTION),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_64BIT),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_133MHZ),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_SC_DISCARDED),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_UNEXPECTED_SC),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_SC_OVERRUN),
FLAG(status, PCI_PCIX_BRIDGE_STATUS_SPLIT_REQUEST_DELAYED));
upstcr = get_conf_long(d, where + PCI_PCIX_BRIDGE_UPSTREAM_SPLIT_TRANS_CTRL);
printf("\t\tUpstream: Capacity=%u CommitmentLimit=%u\n",
(upstcr & PCI_PCIX_BRIDGE_STR_CAPACITY),
(upstcr >> 16) & 0xffff);
downstcr = get_conf_long(d, where + PCI_PCIX_BRIDGE_DOWNSTREAM_SPLIT_TRANS_CTRL);
printf("\t\tDownstream: Capacity=%u CommitmentLimit=%u\n",
(downstcr & PCI_PCIX_BRIDGE_STR_CAPACITY),
(downstcr >> 16) & 0xffff);
}
static void
cap_pcix(struct device *d, int where)
{
switch (get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f)
{
case PCI_HEADER_TYPE_NORMAL:
cap_pcix_nobridge(d, where);
break;
case PCI_HEADER_TYPE_BRIDGE:
cap_pcix_bridge(d, where);
break;
}
}
static inline char *
ht_link_width(unsigned width)
{
static char * const widths[8] = { "8bit", "16bit", "[2]", "32bit", "2bit", "4bit", "[6]", "N/C" };
return widths[width];
}
static inline char *
ht_link_freq(unsigned freq)
{
static char * const freqs[16] = { "200MHz", "300MHz", "400MHz", "500MHz", "600MHz", "800MHz", "1.0GHz", "1.2GHz",
"1.4GHz", "1.6GHz", "[a]", "[b]", "[c]", "[d]", "[e]", "Vend" };
return freqs[freq];
}
static void
cap_ht_pri(struct device *d, int where, int cmd)
{
u16 lctr0, lcnf0, lctr1, lcnf1, eh;
u8 rid, lfrer0, lfcap0, ftr, lfrer1, lfcap1, mbu, mlu, bn;
char *fmt;
printf("HyperTransport: Slave or Primary Interface\n");
if (verbose < 2)
return;
if (!config_fetch(d, where + PCI_HT_PRI_LCTR0, PCI_HT_PRI_SIZEOF - PCI_HT_PRI_LCTR0))
return;
rid = get_conf_byte(d, where + PCI_HT_PRI_RID);
if (rid < 0x23 && rid > 0x11)
printf("\t\t!!! Possibly incomplete decoding\n");
if (rid >= 0x23)
fmt = "\t\tCommand: BaseUnitID=%u UnitCnt=%u MastHost%c DefDir%c DUL%c\n";
else
fmt = "\t\tCommand: BaseUnitID=%u UnitCnt=%u MastHost%c DefDir%c\n";
printf(fmt,
(cmd & PCI_HT_PRI_CMD_BUID),
(cmd & PCI_HT_PRI_CMD_UC) >> 5,
FLAG(cmd, PCI_HT_PRI_CMD_MH),
FLAG(cmd, PCI_HT_PRI_CMD_DD),
FLAG(cmd, PCI_HT_PRI_CMD_DUL));
lctr0 = get_conf_word(d, where + PCI_HT_PRI_LCTR0);
if (rid >= 0x23)
fmt = "\t\tLink Control 0: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x IsocEn%c LSEn%c ExtCTL%c 64b%c\n";
else
fmt = "\t\tLink Control 0: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x\n";
printf(fmt,
FLAG(lctr0, PCI_HT_LCTR_CFLE),
FLAG(lctr0, PCI_HT_LCTR_CST),
FLAG(lctr0, PCI_HT_LCTR_CFE),
FLAG(lctr0, PCI_HT_LCTR_LKFAIL),
FLAG(lctr0, PCI_HT_LCTR_INIT),
FLAG(lctr0, PCI_HT_LCTR_EOC),
FLAG(lctr0, PCI_HT_LCTR_TXO),
(lctr0 & PCI_HT_LCTR_CRCERR) >> 8,
FLAG(lctr0, PCI_HT_LCTR_ISOCEN),
FLAG(lctr0, PCI_HT_LCTR_LSEN),
FLAG(lctr0, PCI_HT_LCTR_EXTCTL),
FLAG(lctr0, PCI_HT_LCTR_64B));
lcnf0 = get_conf_word(d, where + PCI_HT_PRI_LCNF0);
if (rid >= 0x23)
fmt = "\t\tLink Config 0: MLWI=%1$s DwFcIn%5$c MLWO=%2$s DwFcOut%6$c LWI=%3$s DwFcInEn%7$c LWO=%4$s DwFcOutEn%8$c\n";
else
fmt = "\t\tLink Config 0: MLWI=%s MLWO=%s LWI=%s LWO=%s\n";
printf(fmt,
ht_link_width(lcnf0 & PCI_HT_LCNF_MLWI),
ht_link_width((lcnf0 & PCI_HT_LCNF_MLWO) >> 4),
ht_link_width((lcnf0 & PCI_HT_LCNF_LWI) >> 8),
ht_link_width((lcnf0 & PCI_HT_LCNF_LWO) >> 12),
FLAG(lcnf0, PCI_HT_LCNF_DFI),
FLAG(lcnf0, PCI_HT_LCNF_DFO),
FLAG(lcnf0, PCI_HT_LCNF_DFIE),
FLAG(lcnf0, PCI_HT_LCNF_DFOE));
lctr1 = get_conf_word(d, where + PCI_HT_PRI_LCTR1);
if (rid >= 0x23)
fmt = "\t\tLink Control 1: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x IsocEn%c LSEn%c ExtCTL%c 64b%c\n";
else
fmt = "\t\tLink Control 1: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x\n";
printf(fmt,
FLAG(lctr1, PCI_HT_LCTR_CFLE),
FLAG(lctr1, PCI_HT_LCTR_CST),
FLAG(lctr1, PCI_HT_LCTR_CFE),
FLAG(lctr1, PCI_HT_LCTR_LKFAIL),
FLAG(lctr1, PCI_HT_LCTR_INIT),
FLAG(lctr1, PCI_HT_LCTR_EOC),
FLAG(lctr1, PCI_HT_LCTR_TXO),
(lctr1 & PCI_HT_LCTR_CRCERR) >> 8,
FLAG(lctr1, PCI_HT_LCTR_ISOCEN),
FLAG(lctr1, PCI_HT_LCTR_LSEN),
FLAG(lctr1, PCI_HT_LCTR_EXTCTL),
FLAG(lctr1, PCI_HT_LCTR_64B));
lcnf1 = get_conf_word(d, where + PCI_HT_PRI_LCNF1);
if (rid >= 0x23)
fmt = "\t\tLink Config 1: MLWI=%1$s DwFcIn%5$c MLWO=%2$s DwFcOut%6$c LWI=%3$s DwFcInEn%7$c LWO=%4$s DwFcOutEn%8$c\n";
else
fmt = "\t\tLink Config 1: MLWI=%s MLWO=%s LWI=%s LWO=%s\n";
printf(fmt,
ht_link_width(lcnf1 & PCI_HT_LCNF_MLWI),
ht_link_width((lcnf1 & PCI_HT_LCNF_MLWO) >> 4),
ht_link_width((lcnf1 & PCI_HT_LCNF_LWI) >> 8),
ht_link_width((lcnf1 & PCI_HT_LCNF_LWO) >> 12),
FLAG(lcnf1, PCI_HT_LCNF_DFI),
FLAG(lcnf1, PCI_HT_LCNF_DFO),
FLAG(lcnf1, PCI_HT_LCNF_DFIE),
FLAG(lcnf1, PCI_HT_LCNF_DFOE));
printf("\t\tRevision ID: %u.%02u\n",
(rid & PCI_HT_RID_MAJ) >> 5, (rid & PCI_HT_RID_MIN));
if (rid < 0x23)
return;
lfrer0 = get_conf_byte(d, where + PCI_HT_PRI_LFRER0);
printf("\t\tLink Frequency 0: %s\n", ht_link_freq(lfrer0 & PCI_HT_LFRER_FREQ));
printf("\t\tLink Error 0: <Prot%c <Ovfl%c <EOC%c CTLTm%c\n",
FLAG(lfrer0, PCI_HT_LFRER_PROT),
FLAG(lfrer0, PCI_HT_LFRER_OV),
FLAG(lfrer0, PCI_HT_LFRER_EOC),
FLAG(lfrer0, PCI_HT_LFRER_CTLT));
lfcap0 = get_conf_byte(d, where + PCI_HT_PRI_LFCAP0);
printf("\t\tLink Frequency Capability 0: 200MHz%c 300MHz%c 400MHz%c 500MHz%c 600MHz%c 800MHz%c 1.0GHz%c 1.2GHz%c 1.4GHz%c 1.6GHz%c Vend%c\n",
FLAG(lfcap0, PCI_HT_LFCAP_200),
FLAG(lfcap0, PCI_HT_LFCAP_300),
FLAG(lfcap0, PCI_HT_LFCAP_400),
FLAG(lfcap0, PCI_HT_LFCAP_500),
FLAG(lfcap0, PCI_HT_LFCAP_600),
FLAG(lfcap0, PCI_HT_LFCAP_800),
FLAG(lfcap0, PCI_HT_LFCAP_1000),
FLAG(lfcap0, PCI_HT_LFCAP_1200),
FLAG(lfcap0, PCI_HT_LFCAP_1400),
FLAG(lfcap0, PCI_HT_LFCAP_1600),
FLAG(lfcap0, PCI_HT_LFCAP_VEND));
ftr = get_conf_byte(d, where + PCI_HT_PRI_FTR);
printf("\t\tFeature Capability: IsocFC%c LDTSTOP%c CRCTM%c ECTLT%c 64bA%c UIDRD%c\n",
FLAG(ftr, PCI_HT_FTR_ISOCFC),
FLAG(ftr, PCI_HT_FTR_LDTSTOP),
FLAG(ftr, PCI_HT_FTR_CRCTM),
FLAG(ftr, PCI_HT_FTR_ECTLT),
FLAG(ftr, PCI_HT_FTR_64BA),
FLAG(ftr, PCI_HT_FTR_UIDRD));
lfrer1 = get_conf_byte(d, where + PCI_HT_PRI_LFRER1);
printf("\t\tLink Frequency 1: %s\n", ht_link_freq(lfrer1 & PCI_HT_LFRER_FREQ));
printf("\t\tLink Error 1: <Prot%c <Ovfl%c <EOC%c CTLTm%c\n",
FLAG(lfrer1, PCI_HT_LFRER_PROT),
FLAG(lfrer1, PCI_HT_LFRER_OV),
FLAG(lfrer1, PCI_HT_LFRER_EOC),
FLAG(lfrer1, PCI_HT_LFRER_CTLT));
lfcap1 = get_conf_byte(d, where + PCI_HT_PRI_LFCAP1);
printf("\t\tLink Frequency Capability 1: 200MHz%c 300MHz%c 400MHz%c 500MHz%c 600MHz%c 800MHz%c 1.0GHz%c 1.2GHz%c 1.4GHz%c 1.6GHz%c Vend%c\n",
FLAG(lfcap1, PCI_HT_LFCAP_200),
FLAG(lfcap1, PCI_HT_LFCAP_300),
FLAG(lfcap1, PCI_HT_LFCAP_400),
FLAG(lfcap1, PCI_HT_LFCAP_500),
FLAG(lfcap1, PCI_HT_LFCAP_600),
FLAG(lfcap1, PCI_HT_LFCAP_800),
FLAG(lfcap1, PCI_HT_LFCAP_1000),
FLAG(lfcap1, PCI_HT_LFCAP_1200),
FLAG(lfcap1, PCI_HT_LFCAP_1400),
FLAG(lfcap1, PCI_HT_LFCAP_1600),
FLAG(lfcap1, PCI_HT_LFCAP_VEND));
eh = get_conf_word(d, where + PCI_HT_PRI_EH);
printf("\t\tError Handling: PFlE%c OFlE%c PFE%c OFE%c EOCFE%c RFE%c CRCFE%c SERRFE%c CF%c RE%c PNFE%c ONFE%c EOCNFE%c RNFE%c CRCNFE%c SERRNFE%c\n",
FLAG(eh, PCI_HT_EH_PFLE),
FLAG(eh, PCI_HT_EH_OFLE),
FLAG(eh, PCI_HT_EH_PFE),
FLAG(eh, PCI_HT_EH_OFE),
FLAG(eh, PCI_HT_EH_EOCFE),
FLAG(eh, PCI_HT_EH_RFE),
FLAG(eh, PCI_HT_EH_CRCFE),
FLAG(eh, PCI_HT_EH_SERRFE),
FLAG(eh, PCI_HT_EH_CF),
FLAG(eh, PCI_HT_EH_RE),
FLAG(eh, PCI_HT_EH_PNFE),
FLAG(eh, PCI_HT_EH_ONFE),
FLAG(eh, PCI_HT_EH_EOCNFE),
FLAG(eh, PCI_HT_EH_RNFE),
FLAG(eh, PCI_HT_EH_CRCNFE),
FLAG(eh, PCI_HT_EH_SERRNFE));
mbu = get_conf_byte(d, where + PCI_HT_PRI_MBU);
mlu = get_conf_byte(d, where + PCI_HT_PRI_MLU);
printf("\t\tPrefetchable memory behind bridge Upper: %02x-%02x\n", mbu, mlu);
bn = get_conf_byte(d, where + PCI_HT_PRI_BN);
printf("\t\tBus Number: %02x\n", bn);
}
static void
cap_ht_sec(struct device *d, int where, int cmd)
{
u16 lctr, lcnf, ftr, eh;
u8 rid, lfrer, lfcap, mbu, mlu;
char *fmt;
printf("HyperTransport: Host or Secondary Interface\n");
if (verbose < 2)
return;
if (!config_fetch(d, where + PCI_HT_SEC_LCTR, PCI_HT_SEC_SIZEOF - PCI_HT_SEC_LCTR))
return;
rid = get_conf_byte(d, where + PCI_HT_SEC_RID);
if (rid < 0x23 && rid > 0x11)
printf("\t\t!!! Possibly incomplete decoding\n");
if (rid >= 0x23)
fmt = "\t\tCommand: WarmRst%c DblEnd%c DevNum=%u ChainSide%c HostHide%c Slave%c <EOCErr%c DUL%c\n";
else
fmt = "\t\tCommand: WarmRst%c DblEnd%c\n";
printf(fmt,
FLAG(cmd, PCI_HT_SEC_CMD_WR),
FLAG(cmd, PCI_HT_SEC_CMD_DE),
(cmd & PCI_HT_SEC_CMD_DN) >> 2,
FLAG(cmd, PCI_HT_SEC_CMD_CS),
FLAG(cmd, PCI_HT_SEC_CMD_HH),
FLAG(cmd, PCI_HT_SEC_CMD_AS),
FLAG(cmd, PCI_HT_SEC_CMD_HIECE),
FLAG(cmd, PCI_HT_SEC_CMD_DUL));
lctr = get_conf_word(d, where + PCI_HT_SEC_LCTR);
if (rid >= 0x23)
fmt = "\t\tLink Control: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x IsocEn%c LSEn%c ExtCTL%c 64b%c\n";
else
fmt = "\t\tLink Control: CFlE%c CST%c CFE%c <LkFail%c Init%c EOC%c TXO%c <CRCErr=%x\n";
printf(fmt,
FLAG(lctr, PCI_HT_LCTR_CFLE),
FLAG(lctr, PCI_HT_LCTR_CST),
FLAG(lctr, PCI_HT_LCTR_CFE),
FLAG(lctr, PCI_HT_LCTR_LKFAIL),
FLAG(lctr, PCI_HT_LCTR_INIT),
FLAG(lctr, PCI_HT_LCTR_EOC),
FLAG(lctr, PCI_HT_LCTR_TXO),
(lctr & PCI_HT_LCTR_CRCERR) >> 8,
FLAG(lctr, PCI_HT_LCTR_ISOCEN),
FLAG(lctr, PCI_HT_LCTR_LSEN),
FLAG(lctr, PCI_HT_LCTR_EXTCTL),
FLAG(lctr, PCI_HT_LCTR_64B));
lcnf = get_conf_word(d, where + PCI_HT_SEC_LCNF);
if (rid >= 0x23)
fmt = "\t\tLink Config: MLWI=%1$s DwFcIn%5$c MLWO=%2$s DwFcOut%6$c LWI=%3$s DwFcInEn%7$c LWO=%4$s DwFcOutEn%8$c\n";
else
fmt = "\t\tLink Config: MLWI=%s MLWO=%s LWI=%s LWO=%s\n";
printf(fmt,
ht_link_width(lcnf & PCI_HT_LCNF_MLWI),
ht_link_width((lcnf & PCI_HT_LCNF_MLWO) >> 4),
ht_link_width((lcnf & PCI_HT_LCNF_LWI) >> 8),
ht_link_width((lcnf & PCI_HT_LCNF_LWO) >> 12),
FLAG(lcnf, PCI_HT_LCNF_DFI),
FLAG(lcnf, PCI_HT_LCNF_DFO),
FLAG(lcnf, PCI_HT_LCNF_DFIE),
FLAG(lcnf, PCI_HT_LCNF_DFOE));
printf("\t\tRevision ID: %u.%02u\n",
(rid & PCI_HT_RID_MAJ) >> 5, (rid & PCI_HT_RID_MIN));
if (rid < 0x23)
return;
lfrer = get_conf_byte(d, where + PCI_HT_SEC_LFRER);
printf("\t\tLink Frequency: %s\n", ht_link_freq(lfrer & PCI_HT_LFRER_FREQ));
printf("\t\tLink Error: <Prot%c <Ovfl%c <EOC%c CTLTm%c\n",
FLAG(lfrer, PCI_HT_LFRER_PROT),
FLAG(lfrer, PCI_HT_LFRER_OV),
FLAG(lfrer, PCI_HT_LFRER_EOC),
FLAG(lfrer, PCI_HT_LFRER_CTLT));
lfcap = get_conf_byte(d, where + PCI_HT_SEC_LFCAP);
printf("\t\tLink Frequency Capability: 200MHz%c 300MHz%c 400MHz%c 500MHz%c 600MHz%c 800MHz%c 1.0GHz%c 1.2GHz%c 1.4GHz%c 1.6GHz%c Vend%c\n",
FLAG(lfcap, PCI_HT_LFCAP_200),
FLAG(lfcap, PCI_HT_LFCAP_300),
FLAG(lfcap, PCI_HT_LFCAP_400),
FLAG(lfcap, PCI_HT_LFCAP_500),
FLAG(lfcap, PCI_HT_LFCAP_600),
FLAG(lfcap, PCI_HT_LFCAP_800),
FLAG(lfcap, PCI_HT_LFCAP_1000),
FLAG(lfcap, PCI_HT_LFCAP_1200),
FLAG(lfcap, PCI_HT_LFCAP_1400),
FLAG(lfcap, PCI_HT_LFCAP_1600),
FLAG(lfcap, PCI_HT_LFCAP_VEND));
ftr = get_conf_word(d, where + PCI_HT_SEC_FTR);
printf("\t\tFeature Capability: IsocFC%c LDTSTOP%c CRCTM%c ECTLT%c 64bA%c UIDRD%c ExtRS%c UCnfE%c\n",
FLAG(ftr, PCI_HT_FTR_ISOCFC),
FLAG(ftr, PCI_HT_FTR_LDTSTOP),
FLAG(ftr, PCI_HT_FTR_CRCTM),
FLAG(ftr, PCI_HT_FTR_ECTLT),
FLAG(ftr, PCI_HT_FTR_64BA),
FLAG(ftr, PCI_HT_FTR_UIDRD),
FLAG(ftr, PCI_HT_SEC_FTR_EXTRS),
FLAG(ftr, PCI_HT_SEC_FTR_UCNFE));
if (ftr & PCI_HT_SEC_FTR_EXTRS)
{
eh = get_conf_word(d, where + PCI_HT_SEC_EH);
printf("\t\tError Handling: PFlE%c OFlE%c PFE%c OFE%c EOCFE%c RFE%c CRCFE%c SERRFE%c CF%c RE%c PNFE%c ONFE%c EOCNFE%c RNFE%c CRCNFE%c SERRNFE%c\n",
FLAG(eh, PCI_HT_EH_PFLE),
FLAG(eh, PCI_HT_EH_OFLE),
FLAG(eh, PCI_HT_EH_PFE),
FLAG(eh, PCI_HT_EH_OFE),
FLAG(eh, PCI_HT_EH_EOCFE),
FLAG(eh, PCI_HT_EH_RFE),
FLAG(eh, PCI_HT_EH_CRCFE),
FLAG(eh, PCI_HT_EH_SERRFE),
FLAG(eh, PCI_HT_EH_CF),
FLAG(eh, PCI_HT_EH_RE),
FLAG(eh, PCI_HT_EH_PNFE),
FLAG(eh, PCI_HT_EH_ONFE),
FLAG(eh, PCI_HT_EH_EOCNFE),
FLAG(eh, PCI_HT_EH_RNFE),
FLAG(eh, PCI_HT_EH_CRCNFE),
FLAG(eh, PCI_HT_EH_SERRNFE));
mbu = get_conf_byte(d, where + PCI_HT_SEC_MBU);
mlu = get_conf_byte(d, where + PCI_HT_SEC_MLU);
printf("\t\tPrefetchable memory behind bridge Upper: %02x-%02x\n", mbu, mlu);
}
}
static void
cap_ht(struct device *d, int where, int cmd)
{
int type;
switch (cmd & PCI_HT_CMD_TYP_HI)
{
case PCI_HT_CMD_TYP_HI_PRI:
cap_ht_pri(d, where, cmd);
return;
case PCI_HT_CMD_TYP_HI_SEC:
cap_ht_sec(d, where, cmd);
return;
}
type = cmd & PCI_HT_CMD_TYP;
switch (type)
{
case PCI_HT_CMD_TYP_SW:
printf("HyperTransport: Switch\n");
break;
case PCI_HT_CMD_TYP_IDC:
printf("HyperTransport: Interrupt Discovery and Configuration\n");
break;
case PCI_HT_CMD_TYP_RID:
printf("HyperTransport: Revision ID: %u.%02u\n",
(cmd & PCI_HT_RID_MAJ) >> 5, (cmd & PCI_HT_RID_MIN));
break;
case PCI_HT_CMD_TYP_UIDC:
printf("HyperTransport: UnitID Clumping\n");
break;
case PCI_HT_CMD_TYP_ECSA:
printf("HyperTransport: Extended Configuration Space Access\n");
break;
case PCI_HT_CMD_TYP_AM:
printf("HyperTransport: Address Mapping\n");
break;
case PCI_HT_CMD_TYP_MSIM:
printf("HyperTransport: MSI Mapping Enable%c Fixed%c\n",
FLAG(cmd, PCI_HT_MSIM_CMD_EN),
FLAG(cmd, PCI_HT_MSIM_CMD_FIXD));
if (verbose >= 2 && !(cmd & PCI_HT_MSIM_CMD_FIXD))
{
u32 offl, offh;
if (!config_fetch(d, where + PCI_HT_MSIM_ADDR_LO, 8))
break;
offl = get_conf_long(d, where + PCI_HT_MSIM_ADDR_LO);
offh = get_conf_long(d, where + PCI_HT_MSIM_ADDR_HI);
printf("\t\tMapping Address Base: %016llx\n", ((unsigned long long)offh << 32) | (offl & ~0xfffff));
}
break;
case PCI_HT_CMD_TYP_DR:
printf("HyperTransport: DirectRoute\n");
break;
case PCI_HT_CMD_TYP_VCS:
printf("HyperTransport: VCSet\n");
break;
case PCI_HT_CMD_TYP_RM:
printf("HyperTransport: Retry Mode\n");
break;
case PCI_HT_CMD_TYP_X86:
printf("HyperTransport: X86 (reserved)\n");
break;
default:
printf("HyperTransport: #%02x\n", type >> 11);
}
}
static void
cap_msi(struct device *d, int where, int cap)
{
int is64;
u32 t;
u16 w;
printf("Message Signalled Interrupts: Mask%c 64bit%c Queue=%d/%d Enable%c\n",
FLAG(cap, PCI_MSI_FLAGS_MASK_BIT),
FLAG(cap, PCI_MSI_FLAGS_64BIT),
(cap & PCI_MSI_FLAGS_QSIZE) >> 4,
(cap & PCI_MSI_FLAGS_QMASK) >> 1,
FLAG(cap, PCI_MSI_FLAGS_ENABLE));
if (verbose < 2)
return;
is64 = cap & PCI_MSI_FLAGS_64BIT;
if (!config_fetch(d, where + PCI_MSI_ADDRESS_LO, (is64 ? PCI_MSI_DATA_64 : PCI_MSI_DATA_32) + 2 - PCI_MSI_ADDRESS_LO))
return;
printf("\t\tAddress: ");
if (is64)
{
t = get_conf_long(d, where + PCI_MSI_ADDRESS_HI);
w = get_conf_word(d, where + PCI_MSI_DATA_64);
printf("%08x", t);
}
else
w = get_conf_word(d, where + PCI_MSI_DATA_32);
t = get_conf_long(d, where + PCI_MSI_ADDRESS_LO);
printf("%08x Data: %04x\n", t, w);
if (cap & PCI_MSI_FLAGS_MASK_BIT)
{
u32 mask, pending;
if (is64)
{
if (!config_fetch(d, where + PCI_MSI_MASK_BIT_64, 8))
return;
mask = get_conf_long(d, where + PCI_MSI_MASK_BIT_64);
pending = get_conf_long(d, where + PCI_MSI_PENDING_64);
}
else
{
if (!config_fetch(d, where + PCI_MSI_MASK_BIT_32, 8))
return;
mask = get_conf_long(d, where + PCI_MSI_MASK_BIT_32);
pending = get_conf_long(d, where + PCI_MSI_PENDING_32);
}
printf("\t\tMasking: %08x Pending: %08x\n", mask, pending);
}
}
static float power_limit(int value, int scale)
{
static const float scales[4] = { 1.0, 0.1, 0.01, 0.001 };
return value * scales[scale];
}
static const char *latency_l0s(int value)
{
static const char *latencies[] = { "<64ns", "<128ns", "<256ns", "<512ns", "<1us", "<2us", "<4us", "unlimited" };
return latencies[value];
}
static const char *latency_l1(int value)
{
static const char *latencies[] = { "<1us", "<2us", "<4us", "<8us", "<16us", "<32us", "<64us", "unlimited" };
return latencies[value];
}
static void cap_express_dev(struct device *d, int where, int type)
{
u32 t;
u16 w;
t = get_conf_long(d, where + PCI_EXP_DEVCAP);
printf("\t\tDevCap:\tMaxPayload %d bytes, PhantFunc %d, Latency L0s %s, L1 %s\n",
128 << (t & PCI_EXP_DEVCAP_PAYLOAD),
(1 << ((t & PCI_EXP_DEVCAP_PHANTOM) >> 3)) - 1,
latency_l0s((t & PCI_EXP_DEVCAP_L0S) >> 6),
latency_l1((t & PCI_EXP_DEVCAP_L1) >> 9));
printf("\t\t\tExtTag%c", FLAG(t, PCI_EXP_DEVCAP_EXT_TAG));
if ((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END) ||
(type == PCI_EXP_TYPE_UPSTREAM) || (type == PCI_EXP_TYPE_PCI_BRIDGE))
printf(" AttnBtn%c AttnInd%c PwrInd%c",
FLAG(t, PCI_EXP_DEVCAP_ATN_BUT),
FLAG(t, PCI_EXP_DEVCAP_ATN_IND), FLAG(t, PCI_EXP_DEVCAP_PWR_IND));
printf(" RBE%c FLReset%c",
FLAG(t, PCI_EXP_DEVCAP_RBE),
FLAG(t, PCI_EXP_DEVCAP_FLRESET));
if (type == PCI_EXP_TYPE_UPSTREAM)
printf("SlotPowerLimit %fW",
power_limit((t & PCI_EXP_DEVCAP_PWR_VAL) >> 18,
(t & PCI_EXP_DEVCAP_PWR_SCL) >> 26));
printf("\n");
w = get_conf_word(d, where + PCI_EXP_DEVCTL);
printf("\t\tDevCtl:\tReport errors: Correctable%c Non-Fatal%c Fatal%c Unsupported%c\n",
FLAG(w, PCI_EXP_DEVCTL_CERE),
FLAG(w, PCI_EXP_DEVCTL_NFERE),
FLAG(w, PCI_EXP_DEVCTL_FERE),
FLAG(w, PCI_EXP_DEVCTL_URRE));
printf("\t\t\tRlxdOrd%c ExtTag%c PhantFunc%c AuxPwr%c NoSnoop%c",
FLAG(w, PCI_EXP_DEVCTL_RELAXED),
FLAG(w, PCI_EXP_DEVCTL_EXT_TAG),
FLAG(w, PCI_EXP_DEVCTL_PHANTOM),
FLAG(w, PCI_EXP_DEVCTL_AUX_PME),
FLAG(w, PCI_EXP_DEVCTL_NOSNOOP));
if (type == PCI_EXP_TYPE_PCI_BRIDGE || type == PCI_EXP_TYPE_PCIE_BRIDGE)
printf(" BrConfRtry%c", FLAG(w, PCI_EXP_DEVCTL_BCRE));
if (type == PCI_EXP_TYPE_ENDPOINT && (t & PCI_EXP_DEVCAP_FLRESET))
printf(" FLReset%c", FLAG(w, PCI_EXP_DEVCTL_FLRESET));
printf("\n\t\t\tMaxPayload %d bytes, MaxReadReq %d bytes\n",
128 << ((w & PCI_EXP_DEVCTL_PAYLOAD) >> 5),
128 << ((w & PCI_EXP_DEVCTL_READRQ) >> 12));
w = get_conf_word(d, where + PCI_EXP_DEVSTA);
printf("\t\tDevSta:\tCorrErr%c UncorrErr%c FatalErr%c UnsuppReq%c AuxPwr%c TransPend%c\n",
FLAG(w, PCI_EXP_DEVSTA_CED),
FLAG(w, PCI_EXP_DEVSTA_NFED),
FLAG(w, PCI_EXP_DEVSTA_FED),
FLAG(w, PCI_EXP_DEVSTA_URD),
FLAG(w, PCI_EXP_DEVSTA_AUXPD),
FLAG(w, PCI_EXP_DEVSTA_TRPND));
/* FIXME: Second set of control/status registers is not supported yet. */
}
static char *link_speed(int speed)
{
switch (speed)
{
case 1:
return "2.5GT/s";
case 2:
return "5GT/s";
default:
return "unknown";
}
}
static char *aspm_support(int code)
{
switch (code)
{
case 1:
return "L0s";
case 3:
return "L0s L1";
default:
return "unknown";
}
}
static const char *aspm_enabled(int code)
{
static const char *desc[] = { "Disabled", "L0s Enabled", "L1 Enabled", "L0s L1 Enabled" };
return desc[code];
}
static void cap_express_link(struct device *d, int where, int type)
{
u32 t;
u16 w;
t = get_conf_long(d, where + PCI_EXP_LNKCAP);
printf("\t\tLnkCap:\tPort #%d, Speed %s, Width x%d, ASPM %s, Latency L0 %s, L1 %s\n",
t >> 24,
link_speed(t & PCI_EXP_LNKCAP_SPEED), (t & PCI_EXP_LNKCAP_WIDTH) >> 4,
aspm_support((t & PCI_EXP_LNKCAP_ASPM) >> 10),
latency_l0s((t & PCI_EXP_LNKCAP_L0S) >> 12),
latency_l1((t & PCI_EXP_LNKCAP_L1) >> 15));
printf("\t\t\tClockPM%c Suprise%c LLActRep%c BwNot%c\n",
FLAG(t, PCI_EXP_LNKCAP_CLOCKPM),
FLAG(t, PCI_EXP_LNKCAP_SURPRISE),
FLAG(t, PCI_EXP_LNKCAP_DLLA),
FLAG(t, PCI_EXP_LNKCAP_LBNC));
w = get_conf_word(d, where + PCI_EXP_LNKCTL);
printf("\t\tLnkCtl:\tASPM %s;", aspm_enabled(w & PCI_EXP_LNKCTL_ASPM));
if ((type == PCI_EXP_TYPE_ROOT_PORT) || (type == PCI_EXP_TYPE_ENDPOINT) ||
(type == PCI_EXP_TYPE_LEG_END))
printf(" RCB %d bytes", w & PCI_EXP_LNKCTL_RCB ? 128 : 64);
printf(" Disabled%c Retrain%c CommClk%c\n\t\t\tExtSynch%c ClockPM%c AutWidDis%c BWInt%c AutBWInt%c\n",
FLAG(w, PCI_EXP_LNKCTL_DISABLE),
FLAG(w, PCI_EXP_LNKCTL_RETRAIN),
FLAG(w, PCI_EXP_LNKCTL_CLOCK),
FLAG(w, PCI_EXP_LNKCTL_XSYNCH),
FLAG(w, PCI_EXP_LNKCTL_CLOCKPM),
FLAG(w, PCI_EXP_LNKCTL_HWAUTWD),
FLAG(w, PCI_EXP_LNKCTL_BWMIE),
FLAG(w, PCI_EXP_LNKCTL_AUTBWIE));
w = get_conf_word(d, where + PCI_EXP_LNKSTA);
printf("\t\tLnkSta:\tSpeed %s, Width x%d, TrErr%c Train%c SlotClk%c DLActive%c BWMgmt%c ABWMgmt%c\n",
link_speed(w & PCI_EXP_LNKSTA_SPEED),
(w & PCI_EXP_LNKSTA_WIDTH) >> 4,
FLAG(w, PCI_EXP_LNKSTA_TR_ERR),
FLAG(w, PCI_EXP_LNKSTA_TRAIN),
FLAG(w, PCI_EXP_LNKSTA_SL_CLK),
FLAG(w, PCI_EXP_LNKSTA_DL_ACT),
FLAG(w, PCI_EXP_LNKSTA_BWMGMT),
FLAG(w, PCI_EXP_LNKSTA_AUTBW));
}
static const char *indicator(int code)
{
static const char *names[] = { "Unknown", "On", "Blink", "Off" };
return names[code];
}
static void cap_express_slot(struct device *d, int where)
{
u32 t;
u16 w;
t = get_conf_long(d, where + PCI_EXP_SLTCAP);
printf("\t\tSltCap:\tAttnBtn%c PwrCtrl%c MRL%c AttnInd%c PwrInd%c HotPlug%c Surpise%c\n",
FLAG(t, PCI_EXP_SLTCAP_ATNB),
FLAG(t, PCI_EXP_SLTCAP_PWRC),
FLAG(t, PCI_EXP_SLTCAP_MRL),
FLAG(t, PCI_EXP_SLTCAP_ATNI),
FLAG(t, PCI_EXP_SLTCAP_PWRI),
FLAG(t, PCI_EXP_SLTCAP_HPC),
FLAG(t, PCI_EXP_SLTCAP_HPS));
printf("\t\t\tSlot #%3x, PowerLimit %f; Interlock%c NoCompl%c\n",
t >> 19,
power_limit((t & PCI_EXP_SLTCAP_PWR_VAL) >> 7, (t & PCI_EXP_SLTCAP_PWR_SCL) >> 15),
FLAG(t, PCI_EXP_SLTCAP_INTERLOCK),
FLAG(t, PCI_EXP_SLTCAP_NOCMDCOMP));
w = get_conf_word(d, where + PCI_EXP_SLTCTL);
printf("\t\tSltCtl:\tEnable: AttnBtn%c PwrFlt%c MRL%c PresDet%c CmdCplt%c HPIrq%c LinkChg%c\n",
FLAG(w, PCI_EXP_SLTCTL_ATNB),
FLAG(w, PCI_EXP_SLTCTL_PWRF),
FLAG(w, PCI_EXP_SLTCTL_MRLS),
FLAG(w, PCI_EXP_SLTCTL_PRSD),
FLAG(w, PCI_EXP_SLTCTL_CMDC),
FLAG(w, PCI_EXP_SLTCTL_HPIE),
FLAG(w, PCI_EXP_SLTCTL_LLCHG));
printf("\t\t\tControl: AttnInd %s, PwrInd %s, Power%c Interlock%c\n",
indicator((w & PCI_EXP_SLTCTL_ATNI) >> 6),
indicator((w & PCI_EXP_SLTCTL_PWRI) >> 8),
FLAG(w, PCI_EXP_SLTCTL_PWRC),
FLAG(w, PCI_EXP_SLTCTL_INTERLOCK));
w = get_conf_word(d, where + PCI_EXP_SLTSTA);
printf("\t\tSltSta:\tStatus: AttnBtn%c PowerFlt%c MRL%c CmdCplt%c PresDet%c Interlock%c\n",
FLAG(w, PCI_EXP_SLTSTA_ATNB),
FLAG(w, PCI_EXP_SLTSTA_PWRF),
FLAG(w, PCI_EXP_SLTSTA_MRL_ST),
FLAG(w, PCI_EXP_SLTSTA_CMDC),
FLAG(w, PCI_EXP_SLTSTA_PRES),
FLAG(w, PCI_EXP_SLTSTA_INTERLOCK));
printf("\t\t\tChanged: MRL%c PresDet%c LinkState%c\n",
FLAG(w, PCI_EXP_SLTSTA_MRLS),
FLAG(w, PCI_EXP_SLTSTA_PRSD),
FLAG(w, PCI_EXP_SLTSTA_LLCHG));
}
static void cap_express_root(struct device *d, int where)
{
u32 w = get_conf_word(d, where + PCI_EXP_RTCTL);
printf("\t\tRootCtl: ErrCorrectable%c ErrNon-Fatal%c ErrFatal%c PMEIntEna%c CRSVisible%c\n",
FLAG(w, PCI_EXP_RTCTL_SECEE),
FLAG(w, PCI_EXP_RTCTL_SENFEE),
FLAG(w, PCI_EXP_RTCTL_SEFEE),
FLAG(w, PCI_EXP_RTCTL_PMEIE),
FLAG(w, PCI_EXP_RTCTL_CRSVIS));
w = get_conf_word(d, where + PCI_EXP_RTCAP);
printf("\t\tRootCap: CRSVisible%c\n",
FLAG(w, PCI_EXP_RTCAP_CRSVIS));
w = get_conf_word(d, where + PCI_EXP_RTSTA);
printf("\t\tRootSta: PME ReqID %04x, PMEStatus%c PMEPending%c\n",
w & PCI_EXP_RTSTA_PME_REQID,
FLAG(w, PCI_EXP_RTSTA_PME_STATUS),
FLAG(w, PCI_EXP_RTSTA_PME_PENDING));
}
static void
cap_express(struct device *d, int where, int cap)
{
int type = (cap & PCI_EXP_FLAGS_TYPE) >> 4;
int size;
int slot = 0;
printf("Express ");
if (verbose >= 2)
printf("(v%d) ", cap & PCI_EXP_FLAGS_VERS);
switch (type)
{
case PCI_EXP_TYPE_ENDPOINT:
printf("Endpoint");
break;
case PCI_EXP_TYPE_LEG_END:
printf("Legacy Endpoint");
break;
case PCI_EXP_TYPE_ROOT_PORT:
slot = cap & PCI_EXP_FLAGS_SLOT;
printf("Root Port (Slot%c)", FLAG(cap, PCI_EXP_FLAGS_SLOT));
break;
case PCI_EXP_TYPE_UPSTREAM:
printf("Upstream Port");
break;
case PCI_EXP_TYPE_DOWNSTREAM:
slot = cap & PCI_EXP_FLAGS_SLOT;
printf("Downstream Port (Slot%c)", FLAG(cap, PCI_EXP_FLAGS_SLOT));
break;
case PCI_EXP_TYPE_PCI_BRIDGE:
printf("PCI/PCI-X Bridge");
break;
case PCI_EXP_TYPE_PCIE_BRIDGE:
printf("PCI/PCI-X to PCI-Express Bridge");
break;
case PCI_EXP_TYPE_ROOT_INT_EP:
printf("Root Complex Integrated Endpoint");
break;
case PCI_EXP_TYPE_ROOT_EC:
printf("Root Complex Event Collector");
break;
default:
printf("Unknown type %d", type);
}
printf(", MSI %02x\n", (cap & PCI_EXP_FLAGS_IRQ) >> 9);
if (verbose < 2)
return;
size = 16;
if (slot)
size = 24;
if (type == PCI_EXP_TYPE_ROOT_PORT)
size = 32;
if (!config_fetch(d, where + PCI_EXP_DEVCAP, size))
return;
cap_express_dev(d, where, type);
cap_express_link(d, where, type);
if (slot)
cap_express_slot(d, where);
if (type == PCI_EXP_TYPE_ROOT_PORT)
cap_express_root(d, where);
}
static void
cap_msix(struct device *d, int where, int cap)
{
u32 off;
printf("MSI-X: Enable%c Mask%c TabSize=%d\n",
FLAG(cap, PCI_MSIX_ENABLE),
FLAG(cap, PCI_MSIX_MASK),
(cap & PCI_MSIX_TABSIZE) + 1);
if (verbose < 2 || !config_fetch(d, where + PCI_MSIX_TABLE, 8))
return;
off = get_conf_long(d, where + PCI_MSIX_TABLE);
printf("\t\tVector table: BAR=%d offset=%08x\n",
off & PCI_MSIX_BIR, off & ~PCI_MSIX_BIR);
off = get_conf_long(d, where + PCI_MSIX_PBA);
printf("\t\tPBA: BAR=%d offset=%08x\n",
off & PCI_MSIX_BIR, off & ~PCI_MSIX_BIR);
}
static void
cap_slotid(int cap)
{
int esr = cap & 0xff;
int chs = cap >> 8;
printf("Slot ID: %d slots, First%c, chassis %02x\n",
esr & PCI_SID_ESR_NSLOTS,
FLAG(esr, PCI_SID_ESR_FIC),
chs);
}
static void
cap_ssvid(struct device *d, int where)
{
u16 subsys_v, subsys_d;
char ssnamebuf[256];
if (!config_fetch(d, where, 8))
return;
subsys_v = get_conf_word(d, where + PCI_SSVID_VENDOR);
subsys_d = get_conf_word(d, where + PCI_SSVID_DEVICE);
printf("Subsystem: %s\n",
pci_lookup_name(pacc, ssnamebuf, sizeof(ssnamebuf),
PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_VENDOR | PCI_LOOKUP_DEVICE,
d->dev->vendor_id, d->dev->device_id, subsys_v, subsys_d));
}
static void
cap_dsn(struct device *d, int where)
{
u32 t1, t2;
if (!config_fetch(d, where + 4, 8))
return;
t1 = get_conf_long(d, where + 4);
t2 = get_conf_long(d, where + 8);
printf("Device Serial Number %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n",
t1 & 0xff, (t1 >> 8) & 0xff, (t1 >> 16) & 0xff, t1 >> 24,
t2 & 0xff, (t2 >> 8) & 0xff, (t2 >> 16) & 0xff, t2 >> 24);
}
static void
cap_debug_port(int cap)
{
int bar = cap >> 13;
int pos = cap & 0x1fff;
printf("Debug port: BAR=%d offset=%04x\n", bar, pos);
}
static void
show_ext_caps(struct device *d)
{
int where = 0x100;
char been_there[0x1000];
memset(been_there, 0, 0x1000);
do
{
u32 header;
int id;
if (!config_fetch(d, where, 4))
break;
header = get_conf_long(d, where);
if (!header)
break;
id = header & 0xffff;
printf("\tCapabilities: [%03x] ", where);
if (been_there[where]++)
{
printf("<chain looped>\n");
break;
}
switch (id)
{
case PCI_EXT_CAP_ID_AER:
printf("Advanced Error Reporting <?>\n");
break;
case PCI_EXT_CAP_ID_VC:
printf("Virtual Channel <?>\n");
break;
case PCI_EXT_CAP_ID_DSN:
cap_dsn(d, where);
break;
case PCI_EXT_CAP_ID_PB:
printf("Power Budgeting <?>\n");
break;
case PCI_EXT_CAP_ID_RCLINK:
printf("Root Complex Link <?>\n");
break;
case PCI_EXT_CAP_ID_RCILINK:
printf("Root Complex Internal Link <?>\n");
break;
case PCI_EXT_CAP_ID_RCECOLL:
printf("Root Complex Event Collector <?>\n");
break;
case PCI_EXT_CAP_ID_MFVC:
printf("Multi-Function Virtual Channel <?>\n");
break;
case PCI_EXT_CAP_ID_RBCB:
printf("Root Bridge Control Block <?>\n");
break;
case PCI_EXT_CAP_ID_VNDR:
printf("Vendor Specific Information <?>\n");
break;
case PCI_EXT_CAP_ID_ACS:
printf("Access Controls <?>\n");
break;
default:
printf("#%02x\n", id);
break;
}
where = header >> 20;
} while (where);
}
static void
show_caps(struct device *d)
{
int can_have_ext_caps = 0;
if (get_conf_word(d, PCI_STATUS) & PCI_STATUS_CAP_LIST)
{
int where = get_conf_byte(d, PCI_CAPABILITY_LIST) & ~3;
byte been_there[256];
memset(been_there, 0, 256);
while (where)
{
int id, next, cap;
printf("\tCapabilities: ");
if (!config_fetch(d, where, 4))
{
puts("<access denied>");
break;
}
id = get_conf_byte(d, where + PCI_CAP_LIST_ID);
next = get_conf_byte(d, where + PCI_CAP_LIST_NEXT) & ~3;
cap = get_conf_word(d, where + PCI_CAP_FLAGS);
printf("[%02x] ", where);
if (been_there[where]++)
{
printf("<chain looped>\n");
break;
}
if (id == 0xff)
{
printf("<chain broken>\n");
break;
}
switch (id)
{
case PCI_CAP_ID_PM:
cap_pm(d, where, cap);
break;
case PCI_CAP_ID_AGP:
cap_agp(d, where, cap);
break;
case PCI_CAP_ID_VPD:
printf("Vital Product Data <?>\n");
break;
case PCI_CAP_ID_SLOTID:
cap_slotid(cap);
break;
case PCI_CAP_ID_MSI:
cap_msi(d, where, cap);
break;
case PCI_CAP_ID_CHSWP:
printf("CompactPCI hot-swap <?>\n");
break;
case PCI_CAP_ID_PCIX:
cap_pcix(d, where);
can_have_ext_caps = 1;
break;
case PCI_CAP_ID_HT:
cap_ht(d, where, cap);
break;
case PCI_CAP_ID_VNDR:
printf("Vendor Specific Information <?>\n");
break;
case PCI_CAP_ID_DBG:
cap_debug_port(cap);
break;
case PCI_CAP_ID_CCRC:
printf("CompactPCI central resource control <?>\n");
break;
case PCI_CAP_ID_HOTPLUG:
printf("Hot-plug capable\n");
break;
case PCI_CAP_ID_SSVID:
cap_ssvid(d, where);
break;
case PCI_CAP_ID_AGP3:
printf("AGP3 <?>\n");
break;
case PCI_CAP_ID_SECURE:
printf("Secure device <?>\n");
break;
case PCI_CAP_ID_EXP:
cap_express(d, where, cap);
can_have_ext_caps = 1;
break;
case PCI_CAP_ID_MSIX:
cap_msix(d, where, cap);
break;
case PCI_CAP_ID_SATA:
printf("SATA HBA <?>\n");
break;
case PCI_CAP_ID_AF:
printf("PCIe advanced features <?>\n");
break;
default:
printf("#%02x [%04x]\n", id, cap);
}
where = next;
}
}
if (can_have_ext_caps)
show_ext_caps(d);
}
/*** Verbose output ***/
static void
show_size(pciaddr_t x)
{
if (!x)
return;
printf(" [size=");
if (x < 1024)
printf("%d", (int) x);
else if (x < 1048576)
printf("%dK", (int)(x / 1024));
else if (x < 0x80000000)
printf("%dM", (int)(x / 1048576));
else
printf(PCIADDR_T_FMT, x);
putchar(']');
}
static void
show_bases(struct device *d, int cnt)
{
struct pci_dev *p = d->dev;
word cmd = get_conf_word(d, PCI_COMMAND);
int i;
for(i=0; i<cnt; i++)
{
pciaddr_t pos = p->base_addr[i];
pciaddr_t len = (p->known_fields & PCI_FILL_SIZES) ? p->size[i] : 0;
u32 flg = get_conf_long(d, PCI_BASE_ADDRESS_0 + 4*i);
if (flg == 0xffffffff)
flg = 0;
if (!pos && !flg && !len)
continue;
if (verbose > 1)
printf("\tRegion %d: ", i);
else
putchar('\t');
if (pos && !flg) /* Reported by the OS, but not by the device */
{
printf("[virtual] ");
flg = pos;
}
if (flg & PCI_BASE_ADDRESS_SPACE_IO)
{
pciaddr_t a = pos & PCI_BASE_ADDRESS_IO_MASK;
printf("I/O ports at ");
if (a)
printf(PCIADDR_PORT_FMT, a);
else if (flg & PCI_BASE_ADDRESS_IO_MASK)
printf("<ignored>");
else
printf("<unassigned>");
if (!(cmd & PCI_COMMAND_IO))
printf(" [disabled]");
}
else
{
int t = flg & PCI_BASE_ADDRESS_MEM_TYPE_MASK;
pciaddr_t a = pos & PCI_ADDR_MEM_MASK;
int done = 0;
u32 z = 0;
printf("Memory at ");
if (t == PCI_BASE_ADDRESS_MEM_TYPE_64)
{
if (i >= cnt - 1)
{
printf("<invalid-64bit-slot>");
done = 1;
}
else
{
i++;
z = get_conf_long(d, PCI_BASE_ADDRESS_0 + 4*i);
if (opt_buscentric)
{
u32 y = a & 0xffffffff;
if (a || z)
printf("%08x%08x", z, y);
else
printf("<unassigned>");
done = 1;
}
}
}
if (!done)
{
if (a)
printf(PCIADDR_T_FMT, a);
else
printf(((flg & PCI_BASE_ADDRESS_MEM_MASK) || z) ? "<ignored>" : "<unassigned>");
}
printf(" (%s, %sprefetchable)",
(t == PCI_BASE_ADDRESS_MEM_TYPE_32) ? "32-bit" :
(t == PCI_BASE_ADDRESS_MEM_TYPE_64) ? "64-bit" :
(t == PCI_BASE_ADDRESS_MEM_TYPE_1M) ? "low-1M" : "type 3",
(flg & PCI_BASE_ADDRESS_MEM_PREFETCH) ? "" : "non-");
if (!(cmd & PCI_COMMAND_MEMORY))
printf(" [disabled]");
}
show_size(len);
putchar('\n');
}
}
static void
show_rom(struct device *d, int reg)
{
struct pci_dev *p = d->dev;
pciaddr_t rom = p->rom_base_addr;
pciaddr_t len = (p->known_fields & PCI_FILL_SIZES) ? p->rom_size : 0;
u32 flg = get_conf_long(d, reg);
word cmd = get_conf_word(d, PCI_COMMAND);
if (!rom && !flg && !len)
return;
putchar('\t');
if ((rom & PCI_ROM_ADDRESS_MASK) && !(flg & PCI_ROM_ADDRESS_MASK))
{
printf("[virtual] ");
flg = rom;
}
printf("Expansion ROM at ");
if (rom & PCI_ROM_ADDRESS_MASK)
printf(PCIADDR_T_FMT, rom & PCI_ROM_ADDRESS_MASK);
else if (flg & PCI_ROM_ADDRESS_MASK)
printf("<ignored>");
else
printf("<unassigned>");
if (!(flg & PCI_ROM_ADDRESS_ENABLE))
printf(" [disabled]");
else if (!(cmd & PCI_COMMAND_MEMORY))
printf(" [disabled by cmd]");
show_size(len);
putchar('\n');
}
static void
show_htype0(struct device *d)
{
show_bases(d, 6);
show_rom(d, PCI_ROM_ADDRESS);
show_caps(d);
}
static void
show_htype1(struct device *d)
{
u32 io_base = get_conf_byte(d, PCI_IO_BASE);
u32 io_limit = get_conf_byte(d, PCI_IO_LIMIT);
u32 io_type = io_base & PCI_IO_RANGE_TYPE_MASK;
u32 mem_base = get_conf_word(d, PCI_MEMORY_BASE);
u32 mem_limit = get_conf_word(d, PCI_MEMORY_LIMIT);
u32 mem_type = mem_base & PCI_MEMORY_RANGE_TYPE_MASK;
u32 pref_base = get_conf_word(d, PCI_PREF_MEMORY_BASE);
u32 pref_limit = get_conf_word(d, PCI_PREF_MEMORY_LIMIT);
u32 pref_type = pref_base & PCI_PREF_RANGE_TYPE_MASK;
word sec_stat = get_conf_word(d, PCI_SEC_STATUS);
word brc = get_conf_word(d, PCI_BRIDGE_CONTROL);
int verb = verbose > 2;
show_bases(d, 2);
printf("\tBus: primary=%02x, secondary=%02x, subordinate=%02x, sec-latency=%d\n",
get_conf_byte(d, PCI_PRIMARY_BUS),
get_conf_byte(d, PCI_SECONDARY_BUS),
get_conf_byte(d, PCI_SUBORDINATE_BUS),
get_conf_byte(d, PCI_SEC_LATENCY_TIMER));
if (io_type != (io_limit & PCI_IO_RANGE_TYPE_MASK) ||
(io_type != PCI_IO_RANGE_TYPE_16 && io_type != PCI_IO_RANGE_TYPE_32))
printf("\t!!! Unknown I/O range types %x/%x\n", io_base, io_limit);
else
{
io_base = (io_base & PCI_IO_RANGE_MASK) << 8;
io_limit = (io_limit & PCI_IO_RANGE_MASK) << 8;
if (io_type == PCI_IO_RANGE_TYPE_32)
{
io_base |= (get_conf_word(d, PCI_IO_BASE_UPPER16) << 16);
io_limit |= (get_conf_word(d, PCI_IO_LIMIT_UPPER16) << 16);
}
if (io_base <= io_limit || verb)
printf("\tI/O behind bridge: %08x-%08x\n", io_base, io_limit+0xfff);
}
if (mem_type != (mem_limit & PCI_MEMORY_RANGE_TYPE_MASK) ||
mem_type)
printf("\t!!! Unknown memory range types %x/%x\n", mem_base, mem_limit);
else
{
mem_base = (mem_base & PCI_MEMORY_RANGE_MASK) << 16;
mem_limit = (mem_limit & PCI_MEMORY_RANGE_MASK) << 16;
if (mem_base <= mem_limit || verb)
printf("\tMemory behind bridge: %08x-%08x\n", mem_base, mem_limit + 0xfffff);
}
if (pref_type != (pref_limit & PCI_PREF_RANGE_TYPE_MASK) ||
(pref_type != PCI_PREF_RANGE_TYPE_32 && pref_type != PCI_PREF_RANGE_TYPE_64))
printf("\t!!! Unknown prefetchable memory range types %x/%x\n", pref_base, pref_limit);
else
{
pref_base = (pref_base & PCI_PREF_RANGE_MASK) << 16;
pref_limit = (pref_limit & PCI_PREF_RANGE_MASK) << 16;
if (pref_base <= pref_limit || verb)
{
if (pref_type == PCI_PREF_RANGE_TYPE_32)
printf("\tPrefetchable memory behind bridge: %08x-%08x\n", pref_base, pref_limit + 0xfffff);
else
printf("\tPrefetchable memory behind bridge: %08x%08x-%08x%08x\n",
get_conf_long(d, PCI_PREF_BASE_UPPER32),
pref_base,
get_conf_long(d, PCI_PREF_LIMIT_UPPER32),
pref_limit + 0xfffff);
}
}
if (verbose > 1)
printf("\tSecondary status: 66MHz%c FastB2B%c ParErr%c DEVSEL=%s >TAbort%c <TAbort%c <MAbort%c <SERR%c <PERR%c\n",
FLAG(sec_stat, PCI_STATUS_66MHZ),
FLAG(sec_stat, PCI_STATUS_FAST_BACK),
FLAG(sec_stat, PCI_STATUS_PARITY),
((sec_stat & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_SLOW) ? "slow" :
((sec_stat & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_MEDIUM) ? "medium" :
((sec_stat & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_FAST) ? "fast" : "??",
FLAG(sec_stat, PCI_STATUS_SIG_TARGET_ABORT),
FLAG(sec_stat, PCI_STATUS_REC_TARGET_ABORT),
FLAG(sec_stat, PCI_STATUS_REC_MASTER_ABORT),
FLAG(sec_stat, PCI_STATUS_SIG_SYSTEM_ERROR),
FLAG(sec_stat, PCI_STATUS_DETECTED_PARITY));
show_rom(d, PCI_ROM_ADDRESS1);
if (verbose > 1)
{
printf("\tBridgeCtl: Parity%c SERR%c NoISA%c VGA%c MAbort%c >Reset%c FastB2B%c\n",
FLAG(brc, PCI_BRIDGE_CTL_PARITY),
FLAG(brc, PCI_BRIDGE_CTL_SERR),
FLAG(brc, PCI_BRIDGE_CTL_NO_ISA),
FLAG(brc, PCI_BRIDGE_CTL_VGA),
FLAG(brc, PCI_BRIDGE_CTL_MASTER_ABORT),
FLAG(brc, PCI_BRIDGE_CTL_BUS_RESET),
FLAG(brc, PCI_BRIDGE_CTL_FAST_BACK));
printf("\t\tPriDiscTmr%c SecDiscTmr%c DiscTmrStat%c DiscTmrSERREn%c\n",
FLAG(brc, PCI_BRIDGE_CTL_PRI_DISCARD_TIMER),
FLAG(brc, PCI_BRIDGE_CTL_SEC_DISCARD_TIMER),
FLAG(brc, PCI_BRIDGE_CTL_DISCARD_TIMER_STATUS),
FLAG(brc, PCI_BRIDGE_CTL_DISCARD_TIMER_SERR_EN));
}
show_caps(d);
}
static void
show_htype2(struct device *d)
{
int i;
word cmd = get_conf_word(d, PCI_COMMAND);
word brc = get_conf_word(d, PCI_CB_BRIDGE_CONTROL);
word exca;
int verb = verbose > 2;
show_bases(d, 1);
printf("\tBus: primary=%02x, secondary=%02x, subordinate=%02x, sec-latency=%d\n",
get_conf_byte(d, PCI_CB_PRIMARY_BUS),
get_conf_byte(d, PCI_CB_CARD_BUS),
get_conf_byte(d, PCI_CB_SUBORDINATE_BUS),
get_conf_byte(d, PCI_CB_LATENCY_TIMER));
for(i=0; i<2; i++)
{
int p = 8*i;
u32 base = get_conf_long(d, PCI_CB_MEMORY_BASE_0 + p);
u32 limit = get_conf_long(d, PCI_CB_MEMORY_LIMIT_0 + p);
if (limit > base || verb)
printf("\tMemory window %d: %08x-%08x%s%s\n", i, base, limit,
(cmd & PCI_COMMAND_MEMORY) ? "" : " [disabled]",
(brc & (PCI_CB_BRIDGE_CTL_PREFETCH_MEM0 << i)) ? " (prefetchable)" : "");
}
for(i=0; i<2; i++)
{
int p = 8*i;
u32 base = get_conf_long(d, PCI_CB_IO_BASE_0 + p);
u32 limit = get_conf_long(d, PCI_CB_IO_LIMIT_0 + p);
if (!(base & PCI_IO_RANGE_TYPE_32))
{
base &= 0xffff;
limit &= 0xffff;
}
base &= PCI_CB_IO_RANGE_MASK;
limit = (limit & PCI_CB_IO_RANGE_MASK) + 3;
if (base <= limit || verb)
printf("\tI/O window %d: %08x-%08x%s\n", i, base, limit,
(cmd & PCI_COMMAND_IO) ? "" : " [disabled]");
}
if (get_conf_word(d, PCI_CB_SEC_STATUS) & PCI_STATUS_SIG_SYSTEM_ERROR)
printf("\tSecondary status: SERR\n");
if (verbose > 1)
printf("\tBridgeCtl: Parity%c SERR%c ISA%c VGA%c MAbort%c >Reset%c 16bInt%c PostWrite%c\n",
FLAG(brc, PCI_CB_BRIDGE_CTL_PARITY),
FLAG(brc, PCI_CB_BRIDGE_CTL_SERR),
FLAG(brc, PCI_CB_BRIDGE_CTL_ISA),
FLAG(brc, PCI_CB_BRIDGE_CTL_VGA),
FLAG(brc, PCI_CB_BRIDGE_CTL_MASTER_ABORT),
FLAG(brc, PCI_CB_BRIDGE_CTL_CB_RESET),
FLAG(brc, PCI_CB_BRIDGE_CTL_16BIT_INT),
FLAG(brc, PCI_CB_BRIDGE_CTL_POST_WRITES));
if (d->config_cached < 128)
{
printf("\t<access denied to the rest>\n");
return;
}
exca = get_conf_word(d, PCI_CB_LEGACY_MODE_BASE);
if (exca)
printf("\t16-bit legacy interface ports at %04x\n", exca);
}
static void
show_verbose(struct device *d)
{
struct pci_dev *p = d->dev;
word status = get_conf_word(d, PCI_STATUS);
word cmd = get_conf_word(d, PCI_COMMAND);
word class = p->device_class;
byte bist = get_conf_byte(d, PCI_BIST);
byte htype = get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f;
byte latency = get_conf_byte(d, PCI_LATENCY_TIMER);
byte cache_line = get_conf_byte(d, PCI_CACHE_LINE_SIZE);
byte max_lat, min_gnt;
byte int_pin = get_conf_byte(d, PCI_INTERRUPT_PIN);
unsigned int irq = p->irq;
word subsys_v = 0, subsys_d = 0;
char ssnamebuf[256];
show_terse(d);
switch (htype)
{
case PCI_HEADER_TYPE_NORMAL:
if (class == PCI_CLASS_BRIDGE_PCI)
printf("\t!!! Invalid class %04x for header type %02x\n", class, htype);
max_lat = get_conf_byte(d, PCI_MAX_LAT);
min_gnt = get_conf_byte(d, PCI_MIN_GNT);
subsys_v = get_conf_word(d, PCI_SUBSYSTEM_VENDOR_ID);
subsys_d = get_conf_word(d, PCI_SUBSYSTEM_ID);
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((class >> 8) != PCI_BASE_CLASS_BRIDGE)
printf("\t!!! Invalid class %04x for header type %02x\n", class, htype);
irq = int_pin = min_gnt = max_lat = 0;
break;
case PCI_HEADER_TYPE_CARDBUS:
if ((class >> 8) != PCI_BASE_CLASS_BRIDGE)
printf("\t!!! Invalid class %04x for header type %02x\n", class, htype);
min_gnt = max_lat = 0;
if (d->config_cached >= 128)
{
subsys_v = get_conf_word(d, PCI_CB_SUBSYSTEM_VENDOR_ID);
subsys_d = get_conf_word(d, PCI_CB_SUBSYSTEM_ID);
}
break;
default:
printf("\t!!! Unknown header type %02x\n", htype);
return;
}
if (subsys_v && subsys_v != 0xffff)
printf("\tSubsystem: %s\n",
pci_lookup_name(pacc, ssnamebuf, sizeof(ssnamebuf),
PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_VENDOR | PCI_LOOKUP_DEVICE,
p->vendor_id, p->device_id, subsys_v, subsys_d));
if (verbose > 1)
{
printf("\tControl: I/O%c Mem%c BusMaster%c SpecCycle%c MemWINV%c VGASnoop%c ParErr%c Stepping%c SERR%c FastB2B%c DisINTx%c\n",
FLAG(cmd, PCI_COMMAND_IO),
FLAG(cmd, PCI_COMMAND_MEMORY),
FLAG(cmd, PCI_COMMAND_MASTER),
FLAG(cmd, PCI_COMMAND_SPECIAL),
FLAG(cmd, PCI_COMMAND_INVALIDATE),
FLAG(cmd, PCI_COMMAND_VGA_PALETTE),
FLAG(cmd, PCI_COMMAND_PARITY),
FLAG(cmd, PCI_COMMAND_WAIT),
FLAG(cmd, PCI_COMMAND_SERR),
FLAG(cmd, PCI_COMMAND_FAST_BACK),
FLAG(cmd, PCI_COMMAND_DISABLE_INTx));
printf("\tStatus: Cap%c 66MHz%c UDF%c FastB2B%c ParErr%c DEVSEL=%s >TAbort%c <TAbort%c <MAbort%c >SERR%c <PERR%c INTx%c\n",
FLAG(status, PCI_STATUS_CAP_LIST),
FLAG(status, PCI_STATUS_66MHZ),
FLAG(status, PCI_STATUS_UDF),
FLAG(status, PCI_STATUS_FAST_BACK),
FLAG(status, PCI_STATUS_PARITY),
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_SLOW) ? "slow" :
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_MEDIUM) ? "medium" :
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_FAST) ? "fast" : "??",
FLAG(status, PCI_STATUS_SIG_TARGET_ABORT),
FLAG(status, PCI_STATUS_REC_TARGET_ABORT),
FLAG(status, PCI_STATUS_REC_MASTER_ABORT),
FLAG(status, PCI_STATUS_SIG_SYSTEM_ERROR),
FLAG(status, PCI_STATUS_DETECTED_PARITY),
FLAG(status, PCI_STATUS_INTx));
if (cmd & PCI_COMMAND_MASTER)
{
printf("\tLatency: %d", latency);
if (min_gnt || max_lat)
{
printf(" (");
if (min_gnt)
printf("%dns min", min_gnt*250);
if (min_gnt && max_lat)
printf(", ");
if (max_lat)
printf("%dns max", max_lat*250);
putchar(')');
}
if (cache_line)
printf(", Cache Line Size: %d bytes", cache_line * 4);
putchar('\n');
}
if (int_pin || irq)
printf("\tInterrupt: pin %c routed to IRQ " PCIIRQ_FMT "\n",
(int_pin ? 'A' + int_pin - 1 : '?'), irq);
}
else
{
printf("\tFlags: ");
if (cmd & PCI_COMMAND_MASTER)
printf("bus master, ");
if (cmd & PCI_COMMAND_VGA_PALETTE)
printf("VGA palette snoop, ");
if (cmd & PCI_COMMAND_WAIT)
printf("stepping, ");
if (cmd & PCI_COMMAND_FAST_BACK)
printf("fast Back2Back, ");
if (status & PCI_STATUS_66MHZ)
printf("66MHz, ");
if (status & PCI_STATUS_UDF)
printf("user-definable features, ");
printf("%s devsel",
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_SLOW) ? "slow" :
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_MEDIUM) ? "medium" :
((status & PCI_STATUS_DEVSEL_MASK) == PCI_STATUS_DEVSEL_FAST) ? "fast" : "??");
if (cmd & PCI_COMMAND_MASTER)
printf(", latency %d", latency);
if (irq)
printf(", IRQ " PCIIRQ_FMT, irq);
putchar('\n');
}
if (bist & PCI_BIST_CAPABLE)
{
if (bist & PCI_BIST_START)
printf("\tBIST is running\n");
else
printf("\tBIST result: %02x\n", bist & PCI_BIST_CODE_MASK);
}
switch (htype)
{
case PCI_HEADER_TYPE_NORMAL:
show_htype0(d);
break;
case PCI_HEADER_TYPE_BRIDGE:
show_htype1(d);
break;
case PCI_HEADER_TYPE_CARDBUS:
show_htype2(d);
break;
}
}
/*** Machine-readable dumps ***/
static void
show_hex_dump(struct device *d)
{
unsigned int i, cnt;
cnt = d->config_cached;
if (opt_hex >= 3 && config_fetch(d, cnt, 256-cnt))
{
cnt = 256;
if (opt_hex >= 4 && config_fetch(d, 256, 4096-256))
cnt = 4096;
}
for(i=0; i<cnt; i++)
{
if (! (i & 15))
printf("%02x:", i);
printf(" %02x", get_conf_byte(d, i));
if ((i & 15) == 15)
putchar('\n');
}
}
static void
print_shell_escaped(char *c)
{
printf(" \"");
while (*c)
{
if (*c == '"' || *c == '\\')
putchar('\\');
putchar(*c++);
}
putchar('"');
}
static void
show_machine(struct device *d)
{
struct pci_dev *p = d->dev;
int c;
word sv_id=0, sd_id=0;
char classbuf[128], vendbuf[128], devbuf[128], svbuf[128], sdbuf[128];
switch (get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f)
{
case PCI_HEADER_TYPE_NORMAL:
sv_id = get_conf_word(d, PCI_SUBSYSTEM_VENDOR_ID);
sd_id = get_conf_word(d, PCI_SUBSYSTEM_ID);
break;
case PCI_HEADER_TYPE_CARDBUS:
if (d->config_cached >= 128)
{
sv_id = get_conf_word(d, PCI_CB_SUBSYSTEM_VENDOR_ID);
sd_id = get_conf_word(d, PCI_CB_SUBSYSTEM_ID);
}
break;
}
if (verbose)
{
printf((opt_machine >= 2) ? "Slot:\t" : "Device:\t");
show_slot_name(d);
putchar('\n');
printf("Class:\t%s\n",
pci_lookup_name(pacc, classbuf, sizeof(classbuf), PCI_LOOKUP_CLASS, p->device_class));
printf("Vendor:\t%s\n",
pci_lookup_name(pacc, vendbuf, sizeof(vendbuf), PCI_LOOKUP_VENDOR, p->vendor_id, p->device_id));
printf("Device:\t%s\n",
pci_lookup_name(pacc, devbuf, sizeof(devbuf), PCI_LOOKUP_DEVICE, p->vendor_id, p->device_id));
if (sv_id && sv_id != 0xffff)
{
printf("SVendor:\t%s\n",
pci_lookup_name(pacc, svbuf, sizeof(svbuf), PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_VENDOR, sv_id));
printf("SDevice:\t%s\n",
pci_lookup_name(pacc, sdbuf, sizeof(sdbuf), PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_DEVICE, p->vendor_id, p->device_id, sv_id, sd_id));
}
if (c = get_conf_byte(d, PCI_REVISION_ID))
printf("Rev:\t%02x\n", c);
if (c = get_conf_byte(d, PCI_CLASS_PROG))
printf("ProgIf:\t%02x\n", c);
}
else
{
show_slot_name(d);
print_shell_escaped(pci_lookup_name(pacc, classbuf, sizeof(classbuf), PCI_LOOKUP_CLASS, p->device_class));
print_shell_escaped(pci_lookup_name(pacc, vendbuf, sizeof(vendbuf), PCI_LOOKUP_VENDOR, p->vendor_id, p->device_id));
print_shell_escaped(pci_lookup_name(pacc, devbuf, sizeof(devbuf), PCI_LOOKUP_DEVICE, p->vendor_id, p->device_id));
if (c = get_conf_byte(d, PCI_REVISION_ID))
printf(" -r%02x", c);
if (c = get_conf_byte(d, PCI_CLASS_PROG))
printf(" -p%02x", c);
if (sv_id && sv_id != 0xffff)
{
print_shell_escaped(pci_lookup_name(pacc, svbuf, sizeof(svbuf), PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_VENDOR, sv_id));
print_shell_escaped(pci_lookup_name(pacc, sdbuf, sizeof(sdbuf), PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_DEVICE, p->vendor_id, p->device_id, sv_id, sd_id));
}
else
printf(" \"\" \"\"");
putchar('\n');
}
}
/*** Main show function ***/
static void
show_device(struct device *d)
{
if (opt_machine)
show_machine(d);
else if (verbose)
show_verbose(d);
else
show_terse(d);
if (opt_hex)
show_hex_dump(d);
if (verbose || opt_hex)
putchar('\n');
}
static void
show(void)
{
struct device *d;
for(d=first_dev; d; d=d->next)
show_device(d);
}
/*** Tree output ***/
struct bridge {
struct bridge *chain; /* Single-linked list of bridges */
struct bridge *next, *child; /* Tree of bridges */
struct bus *first_bus; /* List of buses connected to this bridge */
unsigned int domain;
unsigned int primary, secondary, subordinate; /* Bus numbers */
struct device *br_dev;
};
struct bus {
unsigned int domain;
unsigned int number;
struct bus *sibling;
struct device *first_dev, **last_dev;
};
static struct bridge host_bridge = { NULL, NULL, NULL, NULL, 0, ~0, 0, ~0, NULL };
static struct bus *
find_bus(struct bridge *b, unsigned int domain, unsigned int n)
{
struct bus *bus;
for(bus=b->first_bus; bus; bus=bus->sibling)
if (bus->domain == domain && bus->number == n)
break;
return bus;
}
static struct bus *
new_bus(struct bridge *b, unsigned int domain, unsigned int n)
{
struct bus *bus = xmalloc(sizeof(struct bus));
bus->domain = domain;
bus->number = n;
bus->sibling = b->first_bus;
bus->first_dev = NULL;
bus->last_dev = &bus->first_dev;
b->first_bus = bus;
return bus;
}
static void
insert_dev(struct device *d, struct bridge *b)
{
struct pci_dev *p = d->dev;
struct bus *bus;
if (! (bus = find_bus(b, p->domain, p->bus)))
{
struct bridge *c;
for(c=b->child; c; c=c->next)
if (c->domain == p->domain && c->secondary <= p->bus && p->bus <= c->subordinate)
{
insert_dev(d, c);
return;
}
bus = new_bus(b, p->domain, p->bus);
}
/* Simple insertion at the end _does_ guarantee the correct order as the
* original device list was sorted by (domain, bus, devfn) lexicographically
* and all devices on the new list have the same bus number.
*/
*bus->last_dev = d;
bus->last_dev = &d->next;
d->next = NULL;
}
static void
grow_tree(void)
{
struct device *d, *d2;
struct bridge **last_br, *b;
/* Build list of bridges */
last_br = &host_bridge.chain;
for(d=first_dev; d; d=d->next)
{
word class = d->dev->device_class;
byte ht = get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f;
if (class == PCI_CLASS_BRIDGE_PCI &&
(ht == PCI_HEADER_TYPE_BRIDGE || ht == PCI_HEADER_TYPE_CARDBUS))
{
b = xmalloc(sizeof(struct bridge));
b->domain = d->dev->domain;
if (ht == PCI_HEADER_TYPE_BRIDGE)
{
b->primary = get_conf_byte(d, PCI_PRIMARY_BUS);
b->secondary = get_conf_byte(d, PCI_SECONDARY_BUS);
b->subordinate = get_conf_byte(d, PCI_SUBORDINATE_BUS);
}
else
{
b->primary = get_conf_byte(d, PCI_CB_PRIMARY_BUS);
b->secondary = get_conf_byte(d, PCI_CB_CARD_BUS);
b->subordinate = get_conf_byte(d, PCI_CB_SUBORDINATE_BUS);
}
*last_br = b;
last_br = &b->chain;
b->next = b->child = NULL;
b->first_bus = NULL;
b->br_dev = d;
}
}
*last_br = NULL;
/* Create a bridge tree */
for(b=&host_bridge; b; b=b->chain)
{
struct bridge *c, *best;
best = NULL;
for(c=&host_bridge; c; c=c->chain)
if (c != b && (c == &host_bridge || b->domain == c->domain) &&
b->primary >= c->secondary && b->primary <= c->subordinate &&
(!best || best->subordinate - best->primary > c->subordinate - c->primary))
best = c;
if (best)
{
b->next = best->child;
best->child = b;
}
}
/* Insert secondary bus for each bridge */
for(b=&host_bridge; b; b=b->chain)
if (!find_bus(b, b->domain, b->secondary))
new_bus(b, b->domain, b->secondary);
/* Create bus structs and link devices */
for(d=first_dev; d;)
{
d2 = d->next;
insert_dev(d, &host_bridge);
d = d2;
}
}
static void
print_it(char *line, char *p)
{
*p++ = '\n';
*p = 0;
fputs(line, stdout);
for(p=line; *p; p++)
if (*p == '+' || *p == '|')
*p = '|';
else
*p = ' ';
}
static void show_tree_bridge(struct bridge *, char *, char *);
static void
show_tree_dev(struct device *d, char *line, char *p)
{
struct pci_dev *q = d->dev;
struct bridge *b;
char namebuf[256];
p += sprintf(p, "%02x.%x", q->dev, q->func);
for(b=&host_bridge; b; b=b->chain)
if (b->br_dev == d)
{
if (b->secondary == b->subordinate)
p += sprintf(p, "-[%04x:%02x]-", b->domain, b->secondary);
else
p += sprintf(p, "-[%04x:%02x-%02x]-", b->domain, b->secondary, b->subordinate);
show_tree_bridge(b, line, p);
return;
}
if (verbose)
p += sprintf(p, " %s",
pci_lookup_name(pacc, namebuf, sizeof(namebuf),
PCI_LOOKUP_VENDOR | PCI_LOOKUP_DEVICE,
q->vendor_id, q->device_id));
print_it(line, p);
}
static void
show_tree_bus(struct bus *b, char *line, char *p)
{
if (!b->first_dev)
print_it(line, p);
else if (!b->first_dev->next)
{
*p++ = '-';
*p++ = '-';
show_tree_dev(b->first_dev, line, p);
}
else
{
struct device *d = b->first_dev;
while (d->next)
{
p[0] = '+';
p[1] = '-';
show_tree_dev(d, line, p+2);
d = d->next;
}
p[0] = '\\';
p[1] = '-';
show_tree_dev(d, line, p+2);
}
}
static void
show_tree_bridge(struct bridge *b, char *line, char *p)
{
*p++ = '-';
if (!b->first_bus->sibling)
{
if (b == &host_bridge)
p += sprintf(p, "[%04x:%02x]-", b->domain, b->first_bus->number);
show_tree_bus(b->first_bus, line, p);
}
else
{
struct bus *u = b->first_bus;
char *k;
while (u->sibling)
{
k = p + sprintf(p, "+-[%04x:%02x]-", u->domain, u->number);
show_tree_bus(u, line, k);
u = u->sibling;
}
k = p + sprintf(p, "\\-[%04x:%02x]-", u->domain, u->number);
show_tree_bus(u, line, k);
}
}
static void
show_forest(void)
{
char line[256];
grow_tree();
show_tree_bridge(&host_bridge, line, line);
}
/*** Bus mapping mode ***/
struct bus_bridge {
struct bus_bridge *next;
byte this, dev, func, first, last, bug;
};
struct bus_info {
byte exists;
byte guestbook;
struct bus_bridge *bridges, *via;
};
static struct bus_info *bus_info;
static void
map_bridge(struct bus_info *bi, struct device *d, int np, int ns, int nl)
{
struct bus_bridge *b = xmalloc(sizeof(struct bus_bridge));
struct pci_dev *p = d->dev;
b->next = bi->bridges;
bi->bridges = b;
b->this = get_conf_byte(d, np);
b->dev = p->dev;
b->func = p->func;
b->first = get_conf_byte(d, ns);
b->last = get_conf_byte(d, nl);
printf("## %02x.%02x:%d is a bridge from %02x to %02x-%02x\n",
p->bus, p->dev, p->func, b->this, b->first, b->last);
if (b->this != p->bus)
printf("!!! Bridge points to invalid primary bus.\n");
if (b->first > b->last)
{
printf("!!! Bridge points to invalid bus range.\n");
b->last = b->first;
}
}
static void
do_map_bus(int bus)
{
int dev, func;
int verbose = pacc->debugging;
struct bus_info *bi = bus_info + bus;
struct device *d;
if (verbose)
printf("Mapping bus %02x\n", bus);
for(dev = 0; dev < 32; dev++)
if (filter.slot < 0 || filter.slot == dev)
{
int func_limit = 1;
for(func = 0; func < func_limit; func++)
if (filter.func < 0 || filter.func == func)
{
/* XXX: Bus mapping supports only domain 0 */
struct pci_dev *p = pci_get_dev(pacc, 0, bus, dev, func);
u16 vendor = pci_read_word(p, PCI_VENDOR_ID);
if (vendor && vendor != 0xffff)
{
if (!func && (pci_read_byte(p, PCI_HEADER_TYPE) & 0x80))
func_limit = 8;
if (verbose)
printf("Discovered device %02x:%02x.%d\n", bus, dev, func);
bi->exists = 1;
if (d = scan_device(p))
{
show_device(d);
switch (get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f)
{
case PCI_HEADER_TYPE_BRIDGE:
map_bridge(bi, d, PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS);
break;
case PCI_HEADER_TYPE_CARDBUS:
map_bridge(bi, d, PCI_CB_PRIMARY_BUS, PCI_CB_CARD_BUS, PCI_CB_SUBORDINATE_BUS);
break;
}
free(d);
}
else if (verbose)
printf("But it was filtered out.\n");
}
pci_free_dev(p);
}
}
}
static void
do_map_bridges(int bus, int min, int max)
{
struct bus_info *bi = bus_info + bus;
struct bus_bridge *b;
bi->guestbook = 1;
for(b=bi->bridges; b; b=b->next)
{
if (bus_info[b->first].guestbook)
b->bug = 1;
else if (b->first < min || b->last > max)
b->bug = 2;
else
{
bus_info[b->first].via = b;
do_map_bridges(b->first, b->first, b->last);
}
}
}
static void
map_bridges(void)
{
int i;
printf("\nSummary of buses:\n\n");
for(i=0; i<256; i++)
if (bus_info[i].exists && !bus_info[i].guestbook)
do_map_bridges(i, 0, 255);
for(i=0; i<256; i++)
{
struct bus_info *bi = bus_info + i;
struct bus_bridge *b = bi->via;
if (bi->exists)
{
printf("%02x: ", i);
if (b)
printf("Entered via %02x:%02x.%d\n", b->this, b->dev, b->func);
else if (!i)
printf("Primary host bus\n");
else
printf("Secondary host bus (?)\n");
}
for(b=bi->bridges; b; b=b->next)
{
printf("\t%02x.%d Bridge to %02x-%02x", b->dev, b->func, b->first, b->last);
switch (b->bug)
{
case 1:
printf(" <overlap bug>");
break;
case 2:
printf(" <crossing bug>");
break;
}
putchar('\n');
}
}
}
static void
map_the_bus(void)
{
if (pacc->method == PCI_ACCESS_PROC_BUS_PCI ||
pacc->method == PCI_ACCESS_DUMP)
printf("WARNING: Bus mapping can be reliable only with direct hardware access enabled.\n\n");
bus_info = xmalloc(sizeof(struct bus_info) * 256);
memset(bus_info, 0, sizeof(struct bus_info) * 256);
if (filter.bus >= 0)
do_map_bus(filter.bus);
else
{
int bus;
for(bus=0; bus<256; bus++)
do_map_bus(bus);
}
map_bridges();
}
/* Main */
int
main(int argc, char **argv)
{
int i;
char *msg;
if (argc == 2 && !strcmp(argv[1], "--version"))
{
puts("lspci version " PCIUTILS_VERSION);
return 0;
}
pacc = pci_alloc();
pacc->error = die;
pci_filter_init(pacc, &filter);
while ((i = getopt(argc, argv, options)) != -1)
switch (i)
{
case 'n':
pacc->numeric_ids++;
break;
case 'v':
verbose++;
break;
case 'b':
pacc->buscentric = 1;
opt_buscentric = 1;
break;
case 's':
if (msg = pci_filter_parse_slot(&filter, optarg))
die("-s: %s", msg);
break;
case 'd':
if (msg = pci_filter_parse_id(&filter, optarg))
die("-d: %s", msg);
break;
case 'x':
opt_hex++;
break;
case 't':
opt_tree++;
break;
case 'i':
pci_set_name_list_path(pacc, optarg, 0);
break;
case 'm':
opt_machine++;
break;
case 'M':
opt_map_mode++;
break;
case 'D':
opt_domains = 2;
break;
default:
if (parse_generic_option(i, pacc, optarg))
break;
bad:
fprintf(stderr, help_msg, pacc->id_file_name);
return 1;
}
if (optind < argc)
goto bad;
pci_init(pacc);
if (opt_map_mode)
map_the_bus();
else
{
scan_devices();
sort_them();
if (opt_tree)
show_forest();
else
show();
}
pci_cleanup(pacc);
return (seen_errors ? 2 : 0);
}
syntax highlighted by Code2HTML, v. 0.9.1